高一数学必修一知识点总结


    数学知识点是高考的基础,掌握高一数学知识点将对高考复习起到重要作用,高一数学必修一知识点总结有哪些你知道吗?一起来看看高一数学必修一知识点总结,欢迎查阅!
    
    高1数学知识点总结
    一、集合、简易逻辑(14课时,8个)
    1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
    二、函数(30课时,12个)
    1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
    三、数列(12课时,5个)
    1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
    四、三角函数(46课时,17个)
    1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
    五、平面向量(12课时,8个)
    1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
    六、不等式(22课时,5个)
    1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
    七、直线和圆的方程(22课时,12个)
    1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
    八、圆锥曲线(18课时,7个)
    1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
    九、直线、平面、简单何体(36课时,28个)
    1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
    十、排列、组合、二项式定理(18课时,8个)
    1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
    十一、概率(12课时,5个)
    1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
    选修Ⅱ(24个)
    十二、概率与统计(14课时,6个)
    1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
    十三、极限(12课时,6个)
    1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
    十四、导数(18课时,8个)
    1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。
    十五、复数(4课时,4个)
    1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二二项方程的解法。
    数学必修一知识点整理集合与函数概念
    一、集合有关概念
    1.集合的含义
    2.集合的中元素的三个特性:
    (1)元素的确定性如:世界上最高的山
    (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
    (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    (2)集合的表示方法:列举法与描述法。
    注意:常用数集及其记法:XKb1.Com
    非负整数集(即自然数集)记作:N
    正整数集:N_或N+
    整数集:Z
    有理数集:Q
    实数集:R
    1)列举法:{a,b,c……}
    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
    3)语言描述法:例:{不是直角三角形的三角形}
    4)Venn图:
    4、集合的分类:
    (1)有限集含有有限个元素的集合
    (2)无限集含有无限个元素的集合
    (3)空集不含任何元素的集合
    二、集合间的基本关系
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
    即:①任何一个集合是它本身的子集。A?A
    ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果A?B,B?C,那么A?C
    ④如果A?B同时B?A那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    4.子集个数:
    有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
    三、集合的运算
    运算类型交集并集补集
    定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
    由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
    基本初等函数
    一、指数函数
    (一)指数与指数幂的运算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
    注意:当是奇数时,当是偶数时,
    2.分数指数幂
    正数的分数指数幂的意义,规定:
    0的正分数指数幂等于0,0的负分数指数幂没有意义
    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
    3.实数指数幂的运算性质
    (二)指数函数及其性质
    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
    注意:指数函数的底数的取值范围,底数不能是负数、零和1.
    2、指数函数的图象和性质
    函数的应用
    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
    方程有实数根函数的图象与轴有交点函数有零点.
    3、函数零点的求法:
    求函数的零点:
    1(代数法)求方程的实数根;
    2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
    4、二次函数的零点:
    二次函数.
    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
    2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
    必修一函数重点知识整理
    1. 函数的奇偶性
    (1)若f(x)是偶函数,那么f(x)=f(-x) ;
    (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
    (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
    (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
    (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
    2. 复合函数的有关问题
    (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
    (2)复合函数的单调性由“同增异减”判定;
    3.函数图像(或方程曲线的对称性)
    (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
    (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
    (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
    (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
    (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
    4.函数的周期性
    (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
    (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
    (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
    (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
    (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
    (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
    5.方程k=f(x)有解 k∈D(D为f(x)的值域);
    6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
    7.(1) (a>0,a≠1,b>0,n∈R+);
    (2) l og a N= ( a>0,a≠1,b>0,b≠1);
    (3) l og a b的符号由口诀“同正异负”记忆;
    (4) a log a N= N ( a>0,a≠1,N>0 );
    8. 判断对应是否为映射时,抓住两点:
    (1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
    9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
    10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
    11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
    12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
    13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。