高三数学考试知识点总结


    高三的生活是我们人生当中记忆深刻的生活之一,每天都面对着一大堆做不完的习题集以及看不完的教辅资料,从一开始的“破罐子破摔”到后来感叹时间不多,还有很多知识点还没有掌握,再到最后的放手一搏。下面是小编给大家带来的高三数学考试知识点总结,希望能帮助到你!
    高三数学考试知识点总结1
    1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
    2.在应用条件时,易A忽略是空集的情况
    3.你会用补集的思想解决有关问题吗?
    4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
    5.你知道“否命题”与“命题的否定形式”的区别.
    6.求解与函数有关的问题易忽略定义域优先的原则.
    7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
    8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
    9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
    10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
    11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
    12.求函数的值域必须先求函数的定义域。
    13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
    14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
    (真数大于零,底数大于零且不等于1)字母底数还需讨论
    15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
    16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
    17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
    18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
    19.绝对值不等式的解法及其几何意义是什么?
    20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
    21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
    22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
    23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
    24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
    25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
    26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
    27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
    28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
    29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
    30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
    31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
    32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
    33.反正弦、反余弦、反正切函数的取值范围分别是
    34.你还记得某些特殊角的三角函数值吗?
    35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
    36.函数的图象的平移,方程的平移以及点的平移公式易混:
    (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.
    (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.
    (3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.
    37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
    38.形如的周期都是,但的周期为。
    39.正弦定理时易忘比值还等于2R。
    高三数学考试知识点总结2
    三角函数。注意归一公式、诱导公式的正确性
    数列题。1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单
    立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
    概率问题。1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;
    高三数学考试知识点总结3
    1.集合的有关概念。
    1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
    注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
    ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
    ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
    2)集合的表示方法:常用的有列举法、描述法和图文法
    3)集合的分类:有限集,无限集,空集。
    4)常用数集:N,Z,Q,R,N_
    2.子集、交集、并集、补集、空集、全集等概念。
    1)子集:若对x∈A都有x∈B,则A B(或A B);
    2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )
    3)交集:A∩B={x| x∈A且x∈B}
    4)并集:A∪B={x| x∈A或x∈B}
    5)补集:CUA={x| x A但x∈U}
    注意:①? A,若A≠?,则? A ;
    ②若, ,则 ;
    ③若且 ,则A=B(等集)
    3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。
    4.有关子集的几个等价关系
    ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
    ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
    5.交、并集运算的性质
    ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
    ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
    6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。