初一数学知识点归纳梳理


    知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初一下册数学知识点总结北师大版
    1.1正数与负数
    在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
    与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
    1.2有理数
    正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
    整数和分数统称有理数(rationalnumber)。
    通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
    数轴三要素:原点、正方向、单位长度。
    在直线上任取一个点表示数0,这个点叫做原点(origin)。
    只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
    数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
    一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
    1.3有理数的加减法
    有理数加法法则:
    1.同号两数相加,取相同的符号,并把绝对值相加。
    2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
    3.一个数同0相加,仍得这个数。
    有理数减法法则:减去一个数,等于加这个数的相反数。
    1.4有理数的乘除法
    有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
    乘积是1的两个数互为倒数。
    有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
    两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
    求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
    负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
    把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
    从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
    七年级下册数学知识点
    概率
    一、事件:
    1、事件分为必然事件、不可能事件、不确定事件。
    2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
    3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
    4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
    二、等可能性:是指几种事件发生的可能性相等。
    1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
    2、必然事件发生的概率为1,记作P(必然事件)=1;
    3、不可能事件发生的概率为0,记作P(不可能事件)=0;
    4、不确定事件发生的概率在0—1之间,记作0
    三、几何概率
    1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
    2、求几何概率:
    (1)首先分析事件所占的面积与总面积的关系;
    (2)然后计算出各部分的面积;
    (3)最后代入公式求出几何概率。
    初一数学复习方法
    代数初步知识
    1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
    2. 几个重要的代数式:(m、n表示整数)
    (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
    (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
    (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
    (4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
    有理数
    凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
    有理数加法法则:
    (1)同号两数相加,取相同的符号,并把绝对值相加;
    (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
    (3)一个数与0相加,仍得这个数.
    有理数加法的运算律:
    (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
    有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
    有理数乘法法则:
    (1)两数相乘,同号为正,异号为负,并把绝对值相乘;
    (2)任何数同零相乘都得零;
    (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
    有理数乘法的运算律:
    (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
    (3)乘法的分配律:a(b+c)=ab+ac .
    有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
    整式的加减
    单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
    单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
    多项式:几个单项式的和叫多项式.
    多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.