高三数学高考知识点总结


    成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。学习也是如此,不能被考试的一次失败打倒,下面是小编给大家带来的高三数学高考知识点总结,希望能帮助到你!
    高三数学高考知识点总结1
    一、排列
    1定义
    (1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
    (2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
    2排列数的公式与性质
    (1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
    特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1
    规定:0!=1
    二、组合
    1定义
    (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
    (2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
    2比较与鉴别
    由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
    排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
    三、排列组合与二项式定理知识点
    1.计数原理知识点
    ①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
    2.排列(有序)与组合(无序)
    Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
    Cnm=n!/(n-m)!m!
    Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
    3.排列组合混合题的解题原则:先选后排,先分再排
    排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
    捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
    插空法(解决相间问题)间接法和去杂法等等
    在求解排列与组合应用问题时,应注意:
    (1)把具体问题转化或归结为排列或组合问题;
    (2)通过分析确定运用分类计数原理还是分步计数原理;
    (3)分析题目条件,避免“选取”时重复和遗漏;
    (4)列出式子计算和作答.
    经常运用的数学思想是:
    ①分类讨论思想;②转化思想;③对称思想.
    4.二项式定理知识点:
    ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
    特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
    ②主要性质和主要结论:对称性Cnm=Cnn-m
    二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
    所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
    奇数项二项式系数的和=偶数项而是系数的和
    Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
    ③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
    5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
    6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
    高三数学高考知识点总结2
    不等式的解集:
    ①能使不等式成立的未知数的值,叫做不等式的解。
    ②一个含有未知数的不等式的所有解,组成这个不等式的解集。
    ③求不等式解集的过程叫做解不等式。
    新一轮中考复习备考周期正式开始,_小编为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:不等式的判定》,仅供参考!
    不等式的判定:
    ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
    ②在不等式“a>b”或“a
    ③不等号的开口所对的数较大,不等号的尖头所对的数较小;
    ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
    不等式分类:
    不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
    通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
    高三数学高考知识点总结3
    1、集合的概念
    集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
    集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
    2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
    3、集合中元素的特性
    (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
    (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
    (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
    4、集合的分类
    集合科根据他含有的元素个数的多少分为两类:
    有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
    无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
    特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0}。
    5、特定的集合的表示
    为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
    (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
    (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
    (3)全体整数的集合通常简称为整数集Z。
    (4)全体有理数的集合通常简称为有理数集,记做Q。
    (5)全体实数的集合通常简称为实数集,记做R。