苏教版二年级数学上册知识点
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些二年级数学知识点的学习资料,希望对大家有所帮助。
小学二年级数学重要知识点归纳
1、7的乘法口诀
(1)结合具体情境,探索、编制7的乘法口诀,学会从已有的知识出发探索新知识的方法。
(2)掌握7的乘法口诀,并能用它解决一些简单的实际问题,感受数学的趣味性和价值性。
2、"倍"的意义及应用
(1)结合具体情境体会"倍"的意义。
(2)利用操作和图示帮助学生理解两个数量之间的倍数关系,并探索"求一个数的几倍是多少"的计算方法。
(3)能利用乘法解决"求一个数的几倍是多少"的实际问题。
(4)学会运用数学思维去观察、发现、解决生活中的数学问题,发展应用数学的意识和解决问题的能力。
3、8的乘法口诀
(1)结合解决问题的过程,探索、编制并掌握8的乘法口诀。
(2)会用学过的乘法口诀计算表内乘法,并能解决简单的实际问题。
4、9的乘法口诀
(1)结合解决问题的过程,探索、编制并掌握9的乘法口诀。
(2)会用学过的乘法口诀计算表内乘法,并能解决简单的实际问题。
实践活动:看一看、摆一摆
(1)利用主题图复习第3、4、5、6单元的相关知识(观察物体、角的认识、表内乘法)。
(2)培养学生的观察能力、动手操作能力和解决实际问题的能力。
(3)让学生体会数学的趣味性和数学的价值性,提高学生学习数学的兴趣。
小学二年级数学长度单位知识点
【概念】
米:国际单位制中长度的标准单位是“米”,用符号“m”表示。
分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
厘米:长度单位,简写符号为:cm。
毫米:英文缩写为mm
(1厘米=10毫米=0。1分米=0。01米=0。00001千米)
【认识米】
(1)米是常用的长度单位。
(2)测量较长物体的长度时,用“米”作单位。
(3)米用字母“m”表示。
(4)1米=100厘米。
【认识厘米】
(1)厘米是常用的长度单位。
(2)测量较短物体的长度时,用“厘米”作单位。
(3)厘米用字母“cm”表示。
(4)1米=100厘米。
【认识线段】
线段的特征:
①线段是直的;②线段有两个端点;③线段可以测量出长度。
【画线段】
画线段的方法:
从尺子的“0”刻度开始画起,需要画几厘米长的线段就画到尺子的几厘米处。(没有直接给出画几厘米,要先算再画最后标记)比如:画比5厘米短2厘米的线段。
数学二年级学习方法
作业的方法
数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
解题,要按一定的程序、步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清。
其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等。这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法。
第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整。最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。
二“由薄到厚”和“由厚到薄”的学习方法
“由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程。“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”。
但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程。在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用。通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。
“由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果。这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要这两者统一起来。
三接受学习与发现学习相结合的方法
数学学习应是有意义接受学习和有意义发现学,如何使两者互相配合、有机结合,充分发挥各自和综合的效力这是学习方法的一个重要方面。
接受学习,不论是听系统的讲授,还是以定论的形式给出的教材,都不涉及任何的独立发现。但在学习过程中,学生处于积极、主动的状态,并非只是单纯的接受,他们总不断地向自己提出问题,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。许多数学家都十分强调“应该不只胀到书面上,而且还要看到书背后的东西。”在进行接受学习时,还要增添某些发现学习的万分,从中学习创造、发明的思想和方法,而不仅仅停留在知识的接受上。
发现学习,是依靠自己对所提供的材料或问题的观察、比较、分析、综合等,独立地了现的解决某问题,从而获得新知识。在解决问题时,要真正理解问题中所涉及的要领、原理、公式、定理和法则,懂得每步操作的意义,以及提出假设、检验假设的目的等。解决问题,总需要联想以往学习过和知识与方法,一时回忆不起来的,还要重新复习,以求进一步理解的应用。有是遇到困难问题,甚至还在查看参考书或请教老师者能解决。可见,这期间也穿插着接受学习。
数学学习既需要接受学习,以便在短时间内获得大量前人积累起来的宝贵知识财富,也需要发现学习,以利于思维、培养创造能力。因此,学习要根据自身的年龄、学习能力特点和教学内容的要求,使两者紧密结合起来。
学好数学的三大法宝正确的思维方式+良好的学习习惯+刻苦的学习精神便是学好数学的三大法宝。
所谓正确的思维方式,通俗点讲就是同学们平时说的解题思路,很多学生抱怨道一看到数学题就完全没有思路,不知道该从何入手。这说明学生还没有建立正确的思维方式。解决这个问题其实并不难,首先课堂上要紧随老师思路,特别是在老师讲解习题时,不要仅仅把精力放在最后的结果上,更应该注重老师讲解的过程和思维的切入点。其次应该勤于思维训练,比如说课后进行相似习题的思考,这里切忌照葫芦画瓢,一定要按照正确的思路从头来一边。最后还应积极的参与新问题的研究和讨论,其实与同学讨论甚至争论都是帮助你不断完善思维方式的有效手段,在讨论中发现自己没有想到的点,积累同一问题的多个思维角度。
良好的学习习惯不仅仅是在数学的学习中发挥着重大作用,它可能会成为你一生中许多事情成败的决定因素。笔记是否记录详实,卷面是否书写工整,课后是否及时复习等等,都是是否建立良好学习习惯的体现。有些同学会说,课堂上的知识当时都明白了,为什么还要记笔记呢?请注意当时明白并不代表以后明白,笔记是为了今后复习时有案可查。还有一些同学会说,复习时再向其他同学借不就好了,殊不知每个同学在记笔记的过程中会有不同的侧重点,甚至是自己标注的特殊符号,这些并不一定是你的侧重点,同时你也失去了一次锻炼自己归纳总结能力的机会。其实良好的学习习惯包括很多,这完全可以在学习过程中慢慢摸索体会,关键在于将学习变成一种有规律,可持久的习惯,然后乐在其中。
刻苦的学习精神并不是简单的学习时间的累加,其实它真正表达的是一种不懈的精神。对于自己没有理解清楚,没有彻底掌握的地方是否马虎应付,还是不停钻研直到弄透?为了提高自己的计算速度和准确率,是否会花费大量的时间进行计算练习。举个最简单的例子,1+1=2同学们都可以非常迅速的回答,但95+36=?能很快给出答案吗?其实这并不是因为1+1简单,而是因为这个结论已经熟于心中,无需计算。因此,只要每个同学可以树立合理的目标,并为之付出不懈的努力,最终是可以实现的,甚至是别人称为“奇迹”的目标。