高一数学下学期知识点


    学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识或技能的过程。学习如果想有成效,就必须专心。学习本身是一件艰苦的事,只有付出艰苦的劳动,才会有相应的收获。下面是小编给大家带来的高一数学下学期知识点,希望大家能够喜欢!
    高一数学下学期知识点1
    定义域
    (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
    值域
    名称定义
    函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
    常用的求值域的方法
    (1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等
    关于函数值域误区
    定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
    “范围”与“值域”相同吗?
    “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
    高一数学下学期知识点2
    函数的有关概念
    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
    三角函数公式
    两角和公式
    sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    倍角公式
    tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
    半角公式
    sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
    cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
    tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
    ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
    和差化积
    2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
    2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
    sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
    tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
    ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
    某些数列前n项和
    1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
    2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
    13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
    正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
    余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
    弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
    乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
    三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
    |a-b|≥|a|-|b| -|a|≤a≤|a|
    一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
    根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理
    判别式
    b2-4ac=0 注:方程有两个相等的实根
    b2-4ac>0 注:方程有两个不等的实根
    b2-4ac<0 注:方程没有实根,有共轭复数根
    降幂公式
    (sin^2)x=1-cos2x/2
    (cos^2)x=i=cos2x/2
    万能公式
    令tan(a/2)=t
    sina=2t/(1+t^2)
    cosa=(1-t^2)/(1+t^2)
    tana=2t/(1-t^2)
    高一数学下学期知识点3
    §1.2.1、函数的概念
    1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.
    2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.
    §1.2.2、函数的表示法
    1、 函数的三种表示方法:解析法、图象法、列表法.
    §1.3.1、单调性与(小)值
    1、 注意函数单调性证明的一般格式:
    §1.3.2、奇偶性
    1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.
    2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.
    高一数学下学期知识点3
    公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
    公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线
    公理3:过不在同一条直线上的三个点,有且只有一个平面。
    推论1:经过一条直线和这条直线外一点,有且只有一个平面。
    推论2:经过两条相交直线,有且只有一个平面。
    推论3:经过两条平行直线,有且只有一个平面。
    公理4:平行于同一条直线的两条直线互相平行。
    等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。