九年级数学二次函数


    你的努力,也许有人会讥讽;你的执着,也许不会有人读懂。在别人眼里你也许是小丑,在自己心中你就是国王!尽管别人如何看你,当你就是不能看不起自己。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
     九年级数学二次函数知识点归纳
    计算方法
    1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
    2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
    3.样本标准差:
    三、 应用举例(略)
    初三数学知识点:第四章 直线形
    ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
    ☆ 内容提要☆
    一、 直线、相交线、平行线
    1.线段、射线、直线三者的区别与联系
    从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
    2.线段的中点及表示
    3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
    4.两点间的距离(三个距离:点-点;点-线;线-线)
    5.角(平角、周角、直角、锐角、钝角)
    6.互为余角、互为补角及表示方法
    7.角的平分线及其表示
    8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
    9.对顶角及性质
    10.平行线及判定与性质(互逆)(二者的区别与联系)
    11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
    12.定义、命题、命题的组成
    13.公理、定理
    14.逆命题
    二、 三角形
    分类:⑴按边分;
    ⑵按角分
    1.定义(包括内、外角)
    2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
    3.三角形的主要线段
    讨论:①定义②线的交点—三角形的心③性质
    ① 高线②中线③角平分线④中垂线⑤中位线
    ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
    4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
    5.全等三角形
    ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
    ⑵特殊三角形全等的判定:①一般方法②专用方法
    6.三角形的面积
    ⑴一般计算公式⑵性质:等底等高的三角形面积相等。
    7.重要辅助线
    ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
    8.证明方法
    ⑴直接证法:综合法、分析法
    ⑵间接证法—反证法:①反设②归谬③结论
    ⑶证线段相等、角相等常通过证三角形全等
    ⑷证线段倍分关系:加倍法、折半法
    ⑸证线段和差关系:延结法、截余法
    ⑹证面积关系:将面积表示出来
    三、 四边形
    分类表:
    1.一般性质(角)
    ⑴内角和:360°
    ⑵顺次连结各边中点得平行四边形。
    推论1:顺次连结对角线相等的四边形各边中点得菱形。
    推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
    ⑶外角和:360°
    2.特殊四边形
    ⑴研究它们的一般方法:
    ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
    ⑶判定步骤:四边形→平行四边形→矩形→正方形
    ┗→菱形——↑
    ⑷对角线的纽带作用:
    3.对称图形
    ⑴轴对称(定义及性质);⑵中心对称(定义及性质)
    4.有关定理:①平行线等分线段定理及其推论1、2
    ②三角形、梯形的中位线定理
    ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
    5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
    6.作图:任意等分线段。
    九年级数学二次函数知识点
    一、 基本概念
    1.方程、方程的解(根)、方程组的解、解方程(组)
    2. 分类:
    二、 解方程的依据—等式性质
    1.a=b←→a+c=b+c
    2.a=b←→ac=bc (c≠0)
    三、 解法
    1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
    系数化成1→解。
    2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
    ②加减法
    四、 一元二次方程
    1.定义及一般形式:
    2.解法:⑴直接开平方法(注意特征)
    ⑵配方法(注意步骤—推倒求根公式)
    ⑶公式法:
    ⑷因式分解法(特征:左边=0)
    3.根的判别式:
    4.根与系数顶的关系:
    逆定理:若 ,则以 为根的一元二次方程是: 。
    5.常用等式:
    五、 可化为一元二次方程的方程
    1.分式方程
    ⑴定义
    ⑵基本思想:
    ⑶基本解法:①去分母法②换元法(如, )
    ⑷验根及方法
    2.无理方程
    ⑴定义
    ⑵基本思想:
    ⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法
    3.简单的二元二次方程组
    由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
    六、 列方程(组)解应用题
    一概述
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
    二常用的相等关系
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ⑴相遇问题(同时出发):
    + = ;
    ⑵追及问题(同时出发):
    若甲出发t小时后,乙才出发,而后在B处追上甲,则
    ⑶水中航行: ;
    2. 配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂
    3.增长率问题:
    4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
    5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    九年级数学二次函数公式、定理
    1 二次函数及其图像
    11 二次函数
    我们把函数y=ax?+bx+c(a,b,c为常数,且a不等于0)叫做二次函数
    12 函数y=ax?(a不等于0)的图像和性质
    用表里各组对应值作为点的坐标,进行描点,然后用光滑的曲线把它们顺次联结起来,就得到函数y=x?的图象这个图象叫做抛物线函数y=x?的图像,以后简称为抛物线y=x?这条抛物线是关于y轴成对称的我们把y轴叫做抛物线y=x?的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点
    13 函数y=ax?+bx+c(a不等于0)的图像和性质
    抛物线y=ax?+bx+c的顶点坐标是(-b/2a,4ac-b?/4a),对称轴方程是x=-b/2a,当a〉0时,抛物线的开口向上,并且向上无限延伸;当a〈0时,抛物线的开口向下,并且向下无限延伸
    当a〉0时,二次函数y=ax?+bx+c在x〈-b/2a时是递减的,在x〉-b/2a时是递增的;在x=-b/2a处取得y最小=4ac-b?/4a当a〈0时,二次函数y=ax?+bx+c在x〈-b/2a时是递减的;在x=-不/2a处取得y=4ac-b?/4a
    2 根据已知条件求二次函数
    21 根据已知条件确定二次函数
    22 二次函数的值或最小值
    23 一元二次方程的图像解法
    九年级数学二次函数