高三数学文科知识点总结


    高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,分数也会大幅度上涨。以下是小编给大家整理的高三数学文科知识点总结,希望能帮助到你!
    高三数学文科知识点总结1
    随机抽样
    简介
    (抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;
    优点:操作简便易行
    缺点:总体过大不易实行
    方法
    (1)抽签法
    一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
    (抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)
    (2)随机数法
    随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
    分层抽样
    简介
    分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。
    定义
    一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
    整群抽样
    定义
    什么是整群抽样
    整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
    应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
    优缺点
    整群抽样的优点是实施方便、节省经费;
    整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
    实施步骤
    先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:
    一、确定分群的标注
    二、总体(N)分成若干个互不重叠的部分,每个部分为一群。
    三、据各样本量,确定应该抽取的群数。
    四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。
    例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。
    与分层抽样的区别
    整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。
    分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;
    分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。
    系统抽样
    定义
    当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
    步骤
    一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:
    (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;
    (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;
    (3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);
    (4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。
    高三数学文科知识点总结2
    (1)先看“充分条件和必要条件”
    当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
    但为什么说q是p的必要条件呢?
    事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
    (2)再看“充要条件”
    若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
    回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
    (3)定义与充要条件
    数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
    显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
    “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
    (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
    高三数学文科知识点总结3
    1.不等式的定义
    在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
    2.比较两个实数的大小
    两个实数的大小是用实数的运算性质来定义的,
    有a-b>0?;a-b=0?;a-b<0?.
    另外,若b>0,则有>1?;=1?;<1?.
    概括为:作差法,作商法,中间量法等.
    3.不等式的性质
    (1)对称性:a>b?;
    (2)传递性:a>b,b>c?;
    (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
    (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
    (5)可乘方:a>b>0?(n∈N,n≥2);
    (6)可开方:a>b>0?(n∈N,n≥2).
    复习指导
    1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
    2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
    3.“两条常用性质”
    (1)倒数性质:①a>b,ab>0?<;②a<0
    ③a>b>0,0;④0
    (2)若a>b>0,m>0,则
    ①真分数的性质:<;>(b-m>0);
    ②假分数的性质:>;<(b-m>0).