高一数学必修一知识点归纳


    “为学当求有益于身,为人当求有益于世。在家则有益于家,在乡则有益于乡,在邑则有益于邑,在天下则有益于天下。斯乃为不虚此生,不虚所学。不能如此,即读书毕世,著作等身,则无益也。下面是小编给大家带来的高一数学必修一知识点归纳,希望大家能够喜欢!
    高一数学必修一知识点归纳1
    一、集合有关概念
    1.集合的含义
    2.集合的中元素的三个特性:
    (1)元素的确定性如:世界上的山
    (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
    (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    (2)集合的表示方法:列举法与描述法。
    注意:常用数集及其记法:XKb1.Com
    非负整数集(即自然数集)记作:N
    正整数集:N_或N+
    整数集:Z
    有理数集:Q
    实数集:R
    1)列举法:{a,b,c……}
    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
    3)语言描述法:例:{不是直角三角形的三角形}
    4)Venn图:
    4、集合的分类:
    (1)有限集含有有限个元素的集合
    (2)无限集含有无限个元素的集合
    (3)空集不含任何元素的集合例:{x|x2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
    即:①任何一个集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同时BíA那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    4.子集个数:
    有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
    三、集合的运算
    运算类型交集并集补集
    定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
    由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
    高一数学必修一知识点归纳2
    1、柱、锥、台、球的结构特征
    (1)棱柱:
    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
    (2)棱锥
    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
    (3)棱台:
    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
    (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.
    (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.
    (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.
    (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.
    3、空间几何体的直观图——斜二测画法
    斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
    4、柱体、锥体、台体的表面积与体积
    (1)几何体的表面积为几何体各个面的面积的和.
    (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
    (3)柱体、锥体、台体的体积公式
    高一数学必修一知识点归纳3
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
    即:①任何一个集合是它本身的子集。A(A
    ②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果A(B,B(C,那么A(C
    ④如果A(B同时B(A那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    有n个元素的集合,含有2n个子集,2n-1个真子集