初二数学知识点归纳整理


    学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
    初二下册数学知识点归纳
    第一章一元一次不等式和一元一次不等式组
    一、不等关系
    1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.
    2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.
    3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.
    非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0
    非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0
    二、不等式的基本性质
    1、掌握不等式的基本性质,并会灵活运用:
    (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
    如果a>b,那么a+c>b+c,a-c>b-c.
    (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
    如果a>b,并且c>0,那么ac>bc,.
    (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
    如果a>b,并且c<0,那么ac
    2、比较大小:(a、b分别表示两个实数或整式)
    一般地:
    如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
    如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
    如果a
    即:
    a>b<===>a-b>0
    a=b<===>a-b=0
    aa-b<0
    (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
    三、不等式的解集:
    1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
    2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.
    3、不等式的解集在数轴上的表示:
    用数轴表示不等式的解集时,要确定边界和方向:
    ①边界:有等号的是实心圆圈,无等号的是空心圆圈;
    ②方向:大向右,小向左
    八年级上册期末数学复习资料
    第一章勾股定理
    1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
    2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
    3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。
    第二章实数
    1.平方根和算术平方根的概念及其性质:
    (1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
    (2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。
    2.立方根的概念及其性质:
    (1)概念:若,那么是的立方根,记作:;
    (2)性质:①;②;③=
    3.实数的概念及其分类:
    (1)概念:实数是有理数和无理数的统称;
    (2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
    4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
    5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。
    第三章图形的平移与旋转
    1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
    2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
    3.作平移图与旋转图。
    八年级数学学习方法技巧
    自学能力的培养是深化学习的必由之路
    在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
    我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
    自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
    因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
    学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
    自信才能自强
    在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
    具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
    数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
    解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。