标题 | 人教版七年级上册数学学生提纲 |
范文 | 初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。以下是小编给大家整理的人教版七年级上册数学学生提纲,希望对大家有所帮助,欢迎阅读! ![]() 人教版七年级上册数学学生提纲 正数和负数 ⒈正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义 ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如: (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。 有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。 2.有理数的分类 ⑴按有理数的意义分类⑵按正、负来分正整数 整数0正有理数正分数 有理数有理数0(0不能忽视) 负整数 分数负有理数负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不 可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。 2.数轴上的点与有理数的关系 ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数) 3.利用数轴表示两数大小 ⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数; ⑶两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的(小)数 ⑴最小的自然数是0,无的自然数; ⑵最小的正整数是1,无的正整数; ⑶的负整数是-1,无最小的负整数 5.a可以表示什么数 ⑴a>0表示a是正数;反之,a是正数,则a>0; ⑵a<0表示a是负数;反之,a是负数,则a<0 ⑶a=0表示a是0;反之,a是0,,则a=0 相反数 ⒈相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2.相反数的性质与判定 ⑴任何数都有相反数,且只有一个; ⑵0的相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3.相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 4.相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化 简得5) 5.相反数的表示方法 ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。 当a>0时,-a<0(正数的相反数是负数) 当a<0时,-a>0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0) 绝对值 ⒈绝对值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。 2.绝对值的代数定义 ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0. 可用字母表示为: ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。 可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题 如数轴所示,化简下列各数 |a|,|b|,|c|,|a-b|,|a-c|,|b+c| 解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0, 所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c 3.绝对值的性质 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0; ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0; ⑶任何数的绝对值都不小于原数。即:|a|≥a; ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a; ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。 (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0) 学好初中数学的方法 (一)学好初中数学需要养成阅读课本的习惯 前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。数学语言精练、语句严谨;所以只有做到对每个句子、每个概念、每个图表都应细致地阅读分析,领会其内容、含义。才能体会到其中的数学思想方法,并能正确依据数学原理分析它们之间的逻辑关系,达到对材料的真正理解,形成知识结构。 (二)学好初中数学需要培养“想要听、听得懂、懂得听”的习惯 要做到想要听,就得明白学习数学的意义:在多年的数学学习中,数学真理的绝对性,数学结论的可靠性,数学演算的精确性,数学思维的严密性,点点滴滴地渗入到我们的思想,这些将在我们日后的人生历程中起着重要的作用。要达到听得懂,就必须提前预习,保持专注;要做到懂得听就是明白听课重点。 (三)学好初中数学需要养成良好的作业习惯 做作业前先要复习巩固所学的概念、定理和性质,联想老师所讲过的经典例题。做题时一要看题准确,即文字、数学式子、数学符号等不多看、少看或漏看;二要分得清楚,即能分清题目的条件、结论。由题联想到它考查的知识点。 中考考前怎样复习数学 首先,要抓住基础概念,将其作为技巧突破口。数学试题中的所谓解题技巧其实并不是什么高深莫测的东西,它来源于最基础的知识和概念,是掌握到一定程度时的灵光一现。要寻找差异——因为做了大量雷同的练习,所以容易造成对相近试题的判断失误,这是非常危险的。 其次,要抓住常用公式,理解其来龙去脉。这对记忆常用数学公式是很有帮助的。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可以使自己更好地掌握公式的运用,往往会有意想不到的效果。 再次,要抓住中考动向,勤练解题规范。很多学生认为,只要解出题目的答案就能拿到满分了。其实,由于新课程改革的不断深入,中考越来越注重解题过程的规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。 最后,要抓住数学思想,总结解题方法。中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、化归思想等来解决一些综合问题,在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反三,化繁为简,分步突破;而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。