标题 | 平行四边形四年级知识点 |
范文 |
平行四边形(包括特殊的平行四边形)中各性质、判定定理繁多;几何证明的方法亦可多条,学生极易搞混。我们如何去灵活的记忆整理呢?下面小编给大家分享一些平行四边形四年级知识点,希望能够帮助大家,欢迎阅读! ![]() 平行四边形四年级知识1 平行四边形的性质: 平行四边形的对边平行且相等; 平行四边形的对角相等; 平行四边形的两条对角线互相平分; 平行四边形是中心对称图形,对称中心是两条对角线的交点; 平行四边形的判定: 两组对边分别相等的四边形是平行四边形; 两组对边分别平行的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 两条对角线互相平分的四边形是平行四边形; 矩 形 矩形特有的性质: 矩形的四个角都是直角; 矩形的对角线相等; (外垂直内相等) 矩形的判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形; 菱 形 菱形特有的性质: 四条边都相等; 对角线互相垂直; (外相等内垂直) 每条对角线平分一组对角; 菱形的判定: 一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 四边相等的四边形是菱形; 正 方 形 正方形特有的性质: 四条边都相等; 四个角都是90°; 对角线相等且互相垂直平分; 每条对角线平分一组对角。 正方形的判定: 四边相等,有三个角是直角的四边形是正方形; 一组邻边相等的矩形是正方形; 对角线互相垂直的矩形是正方形; 有一个角是直角的菱形是正方形; 对角线相等的菱形是正方形; 平行四边形四年级知识2 1.定义:两组对边分别平行的四边形叫平行四边形 2.平行四边形的性质 (1)平行四边形的对边平行且相等; (2)平行四边形的邻角互补,对角相等; (3)平行四边形的对角线互相平分; 3.平行四边形的判定 平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分: 第一类:与四边形的对边有关 (1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形; 第二类:与四边形的对角有关 (4)两组对角分别相等的四边形是平行四边形; 第三类:与四边形的对角线有关 (5)对角线互相平分的四边形是平行四边形 常见考法 (1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。 误区提醒 (1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。 平行四边形四年级知识3 一、特殊的平行四边形 1.矩形: (1)定义:有一个角是直角的平行四边形。 (2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。 (3)判定定理: ①有一个角是直角的平行四边形叫做矩形。②对角线相等的平行四边形是矩形。③有三个角是直角的四边形是矩形。 直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。 2.菱形: (1)定义 :邻边相等的平行四边形。 (2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 (3)判定定理: ①一组邻边相等的平行四边形是菱形。 ②对角线互相垂直的平行四边形是菱形。 ③四条边相等的四边形是菱形。 (4)面积: 3.正方形: (1)定义:一个角是直角的菱形或邻边相等的矩形。 (2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。 正方形既是矩形,又是菱形。 (3)正方形判定定理: ①对角线互相垂直平分且相等的四边形是正方形; ②一组邻边相等,一个角为直角的平行四边形是正方形; ③对角线互相垂直的矩形是正方形; ④邻边相等的矩形是正方形 ⑤有一个角是直角的菱形是正方形; ⑥对角线相等的菱形是正方形。 二、矩形、菱形、正方形与平行四边形、四边形之间的联系: 1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。 2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。 三、判定一个四边形是特殊四边形的步骤: 常见考法 (1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算; (2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形; (3)一些折叠问题; (4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。 误区提醒 (1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆; (2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆; (3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);(3)再利用对角线长度求菱形的面积时,忘记乘;(3)判定一个四边形是特殊的平行四边形的条件不充分。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。