标题 | 高中数学学习知识点方法 |
范文 |
数学是科学研究的基础,它与物理、化学、生物等学科密切相关。下面是小编为大家带来的高中数学学习知识点方法,希望大家能够喜欢!快来看看吧! ![]() 数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特殊的函数,数列是可以用图象直观地表示的 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确. 把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点. 不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 ①经历从实际情境中抽象出一元二次不等式模型的过程。 ②通过函数图象了解一元二次不等式与相应函数、方程的联系。 ③会解一元二次不等式,对给定的`一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组。 ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。 (4)基本不等式 ①探索并了解基本不等式的证明过程。 ②会用基本不等式解决简单的(小)值问题。 不等式的解集 ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 不等式的判定: ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于; ②在不等式“a>b”或“a ③不等号的开口所对的数较大,不等号的尖头所对的数较小; ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。 任一x?A,x?B,记做AB AB,BAA=B AB={x|x?A,且x?B} AB={x|x?A,或x?B} Card(AB)=card(A)+card(B)-card(AB) (1)命题 原命题若p则q 逆命题若q则p 否命题若p则q 逆否命题若q,则p (2)AB,A是B成立的`充分条件 BA,A是B成立的必要条件 AB,A是B成立的充要条件 1.集合元素具有①确定性;②互异性;③无序性 2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法 (3)集合的运算 ①A∩(B∪C)=(A∩B)∪(A∩C) ②Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB (4)集合的性质 n元集合的字集数:2n 真子集数:2n-1; 非空真子集数:2n-2 三类角的求法 ①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。 复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。