标题 | 初一数学上册知识点最新 |
范文 | 数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。下面小编为大家带来初一数学上册知识点最新,希望大家喜欢! ![]() 初一数学上册知识点 一、多姿多彩的图形 1.从实物中抽象出的各种图形统称为几何图形。 2.点、线、面、体 A.点:线和线相交的地方。 B.线:面和面相交的地方,线可分为直线、射线、线段 C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。 D.面:包围着体的是面,面可分为平的面、曲的面。 二、直线、射线、线段 1.两点确定一条直线 2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 3.两点之间,线段最短。 4.连接两点间的线段的长度,叫做这两点的距离。 三、角 1.有且只有一个角 2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。 3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″ 4.角的平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 B.角平分线上的一点到角的两边距离相等。 四、线段、射线和直线的联系与区别 联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线. 初一数学上册基础知识点 第一章 有理数 1.正数和负数 2.有理数 3.有理数的加减 4.有理数的乘除 5.有理数的乘方 重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字 难点:绝对值 易错点:绝对值、有理数计算 中考必考:科学计数法、相反数(选择题) 第二章 整式的加减 1.整式 2.整式的加减 重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减 难点:单项式与多项式的系数和次数的确定、合并同类项 易错点:合并同类项、计算失误、整数次数的确定 中考必考:同类项、整数系数次数的确定、整式加减 第三章 一元一次方程 1.从算式到方程 2.解一元一次方程----合并同类项与移项 3.解一元一次方程----去括号去分母 4.实际问题与一元一次方程 重点:一元一次方程(定义、解法、应用) 难点:一元一次方程的解法(步骤) 易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系 第四章 图形认识实步 1.多姿多彩的图形 2.直线、射线、线段 3.角 4.课题实践——设计制作长方形形状的包装纸盒 重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等 难点:中点和角平分线的相关计算、余角和补角的应用 易错点:等量关系不会转化、审题不清 初一数学上册必看知识点 一、目标与要求 1.了解正数与负数是从实际需要中产生的。 2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。 3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算; 4.了解倒数概念,会求给定有理数的倒数; 5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法 二、重点 正、负数的概念; 正确理解数轴的概念和用数轴上的点表示有理数; 有理数的加法法则; 除法法则和除法运算。 三、难点 负数的概念、正确区分两种不同意义的量; 数轴的概念和用数轴上的点表示有理数; 异号两数相加的法则; 根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。 四、知识框架 五、知识点、概念总结 1.正数:比0大的数叫正数。 2.负数:比0小的数叫负数。 3.有理数: (1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: 4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。 5.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0等价于a+b=0等价于a、b互为相反数。 6.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为: 绝对值的问题经常分类讨论; 7.有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数>0,小数-大数<0. 8.互为倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。 9. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;10.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b)+c=a+(b+c)。 11.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。 12.有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 13. 有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac 。 14.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。 15.有理数乘方的'法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n ,当n为正偶数时:(-a)n =an 或(a-b)n=(b-a)n 。 16.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 17.科学记数法: 把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。 18.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。 19.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。 20.混合运算法则:先乘方,后乘除,最后加减。 (参考教材:初中数学七年级人教版) 练习: 1.若密云水库的水位比标准水位高出3cm记为+3cm,某月的水位记录中显示,1日水位为-5cm,2日水位为-1cm,3日水位为+4cm,则( ) A.1日与2日水位相差6cm B.1日与3日水位相差1cm C.2日与3日水位相差5cm D.均不正确 2.篮球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表: 最接近标准质量的是_________号篮球;质量最大的篮球比质量最小的篮球重____________克. 3.判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1。 (3)一个数与0相加,仍得这个数。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。