标题 | 七年级数学的公式 |
范文 | 学习犹如登山,有的人则注重最终目标,有的人则注重前进的过程,不论哪种,都有其各自丰富的内涵,无孰优劣孰之分,只要你觉得适合即可。下面给大家分享一些关于七年级数学的公式,希望对大家有所帮助。 乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解根与系数的关系 -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a X1+X2=-b/aX1·X2=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根 b2-4ac>0注:方程有两个不等的实根 b2-4ac<0注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3 其他常用数学公式 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2pxy2=-2p--2=2pyx2=-2py 直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h 正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2 圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l 弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r 锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s·h圆柱体V=pi·r2h 七年级数学的公式 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。