标题 | 高三数学知识点梳理 |
范文 | 高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的选择。下面小编为大家带来高三数学知识点梳理,希望对您有所帮助! ![]() 高三数学知识点梳理 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2、直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 3、直线方程 点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 高三数学上学期知识点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: (1)(代数法)求方程的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 高三数学上册知识点 1、圆柱体: 表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、正方体 a—边长,S=6a2,V=a3 4、长方体 a—长,b—宽,c—高S=2(ab+ac+bc)V=abc 5、棱柱 S—底面积h—高V=Sh 6、棱锥 S—底面积h—高V=Sh/3 7、棱台 S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1—上底面积,S2—下底面积,S0—中截面积 h—高,V=h(S1+S2+4S0)/6 9、圆柱 r—底半径,h—高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2) 11、直圆锥 r—底半径h—高V=πr^2h/3 12、圆台 r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3 13、球 r—半径d—直径V=4/3πr^3=πd^3/6 14、球缺 h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3 15、球台 r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6 16、圆环体 R—环体半径D—环体直径r—环体截面半径d—环体截面直径 V=2π2Rr2=π2Dd2/4 17、桶状体 D—桶腹直径d—桶底直径h—桶高 V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。