网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 高三数学知识考点整理集锦
范文
    有很多的同学是非常想知道,高考数学必备知识点及公式有哪些?接下来是小编为大家整理的高三数学知识考点整理集锦,希望大家喜欢!
    高三数学知识考点整理集锦一
    高考数学常考难点:必修二
    第一章:空间几何
    三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
    在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
    第二章:点、直线、平面之间的位置关系
    这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
    关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
    第三章:直线与方程
    这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。
    第四章:圆与方程
    能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。
    高三数学知识考点整理集锦二
    高考数学易错知识点:函数与导数
    1.易错点求函数定义域忽视细节致误
    错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
    在求一般函数定义域时要注意下面几点:
    (1)分母不为0;
    (2)偶次被开放式非负;
    (3)真数大于0;
    (4)0的0次幂没有意义。
    函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
    2.易错点带有绝对值的函数单调性判断错误
    错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:
    一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;
    二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
    对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
    3.易错点求函数奇偶性的常见错误
    错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
    判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
    在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
    4.易错点抽象函数中推理不严密致误
    错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
    解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
    抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
    5.易错点函数零点定理使用不当致误
    错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
    函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
    6.易错点混淆两类切线致误
    错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
    7.易错点混淆导数与单调性的关系致误
    错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
    研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
    8.易错点导数与极值关系不清致误
    错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
    出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
      高三数学知识考点整理集锦三
    高中数学有哪些必备知识点
    1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
    中元素各表示什么?
    注重借助于数轴和文氏图解集合问题。
    空集是一切集合的子集,是一切非空集合的真子集。
    3.注意下列性质:
    (3)德摩根定律:
    4.你会用补集思想解决问题吗?(排除法、间接法)
    的取值范围。
    6.命题的四种形式及其相互关系是什么?
    (互为逆否关系的命题是等价命题。)
    原命题与逆否命题同真、同假;逆命题与否命题同真同假。
    7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
    (一对一,多对一,允许B中有元素无原象。)
    8.函数的三要素是什么?如何比较两个函数是否相同?
    (定义域、对应法则、值域)
    9.求函数的定义域有哪些常见类型?
    10.如何求复合函数的定义域?
    义域是_____________。
    11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
    12.反函数存在的条件是什么?
    (一一对应函数)
    求反函数的步骤掌握了吗?
    (①反解x;②互换x、y;③注明定义域)
    13.反函数的性质有哪些?
    ①互为反函数的图象关于直线y=x对称;
    ②保存了原来函数的单调性、奇函数性;
    14.如何用定义证明函数的单调性?
    (取值、作差、判正负)
    如何判断复合函数的单调性?
    ∴……)
    15.如何利用导数判断函数的单调性?
    值是()
    A.0B.1C.2D.3
    ∴a的最大值为3)
    16.函数f(x)具有奇偶性的必要(非充分)条件是什么?
    (f(x)定义域关于原点对称)
    注意如下结论:
    (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
    17.你熟悉周期函数的定义吗?
    函数,T是一个周期。)
    如:
    18.你掌握常用的图象变换了吗?
    注意如下“翻折”变换:
    19.你熟练掌握常用函数的图象和性质了吗?
    的双曲线。
    应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
    ②求闭区间[m,n]上的最值。
    ③求区间定(动),对称轴动(定)的最值问题。
    ④一元二次方程根的分布问题。
    由图象记性质!(注意底数的限定!)
    利用它的单调性求最值与利用均值不等式求最值的区别是什么?
    20.你在基本运算上常出现错误吗?
    21.如何解抽象函数问题?
    (赋值法、结构变换法)
    22.掌握求函数值域的常用方法了吗?
    (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
    如求下列函数的最值:
    23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
    24.熟记三角函数的定义,单位圆中三角函数线的定义
    25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
    (x,y)作图象。
    27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
    28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
    29.熟练掌握三角函数图象变换了吗?
    (平移变换、伸缩变换)
    平移公式:
    图象?
    30.熟练掌握同角三角函数关系和诱导公式了吗?
    “奇”、“偶”指k取奇、偶数。
    A.正值或负值B.负值C.非负值D.正值
    31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
    理解公式之间的联系:
    应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
    具体方法:
    (2)名的变换:化弦或化切
    (3)次数的变换:升、降幂公式
    (4)形的变换:统一函数形式,注意运用代数运算。
    32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
    (应用:已知两边一夹角求第三边;已知三边求角。)
    33.用反三角函数表示角时要注意角的范围。
    34.不等式的性质有哪些?
    答案:C
    35.利用均值不等式:
    值?(一正、二定、三相等)
    注意如下结论:
    36.不等式证明的基本方法都掌握了吗?
    (比较法、分析法、综合法、数学归纳法等)
    并注意简单放缩法的应用。
    (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
    38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
    39.解含有参数的不等式要注意对字母参数的讨论
    40.对含有两个绝对值的不等式如何去解?
    (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
    证明:
    (按不等号方向放缩)
    42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
    43.等差数列的定义与性质
    0的二次函数)
    项,即:
    44.等比数列的定义与性质
    46.你熟悉求数列通项公式的常用方法吗?
    例如:(1)求差(商)法
    解:
    [练习]
    (2)叠乘法
    解:
    (3)等差型递推公式
    [练习]
    (4)等比型递推公式
    [练习]
    (5)倒数法
    47.你熟悉求数列前n项和的常用方法吗?
    例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
    解:
    [练习]
    (2)错位相减法:
    (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
    [练习]
    48.你知道储蓄、贷款问题吗?
    △零存整取储蓄(单利)本利和计算模型:
    若每期存入本金p元,每期利率为r,n期后,本利和为:
    △若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
    若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足
    p——贷款数,r——利率,n——还款期数
    49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
    (2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
    (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
    50.解排列与组合问题的规律是:
    相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
    如:学号为1,2,3,4的四名学生的考试成绩
    则这四位同学考试成绩的所有可能情况是()
    A.24B.15C.12D.10
    解析:可分成两类:
    (2)中间两个分数相等
    相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
    ∴共有5+10=15(种)情况
    51.二项式定理
    性质:
    (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
    表示)
    52.你对随机事件之间的关系熟悉吗?
    的和(并)。
    (5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
    (6)对立事件(互逆事件):
    (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
    53.对某一事件概率的求法:
    分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即
    (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生
    如:设10件产品中有4件次品,6件正品,求下列事件的概率。
    (1)从中任取2件都是次品;
    (2)从中任取5件恰有2件次品;
    (3)从中有放回地任取3件至少有2件次品;
    解析:有放回地抽取3次(每次抽1件),∴n=103
    而至少有2件次品为“恰有2次品”和“三件都是次品”
    (4)从中依次取5件恰有2件次品。
    解析:∵一件一件抽取(有顺序)
    分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
    54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
    55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
    要熟悉样本频率直方图的作法:
    (2)决定组距和组数;
    (3)决定分点;
    (4)列频率分布表;
    (5)画频率直方图。
    如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
    56.你对向量的有关概念清楚吗?
    (1)向量——既有大小又有方向的量。
    在此规定下向量可以在平面(或空间)平行移动而不改变。
    (6)并线向量(平行向量)——方向相同或相反的向量。
    规定零向量与任意向量平行。
    (7)向量的加、减法如图:
    (8)平面向量基本定理(向量的分解定理)
    的一组基底。
    (9)向量的坐标表示
    表示。
    57.平面向量的数量积
    数量积的几何意义:
    (2)数量积的运算法则
    [练习]
    答案:
    答案:2
    答案:
    58.线段的定比分点
    ※.你能分清三角形的重心、垂心、外心、内心及其性质吗?
    59.立体几何中平行、垂直关系证明的思路清楚吗?
    平行垂直的证明主要利用线面关系的转化:
    线面平行的判定:
    线面平行的性质:
    三垂线定理(及逆定理):
    线面垂直:
    面面垂直:
    60.三类角的定义及求法
    (1)异面直线所成的角θ,0°<θ≤90°
    (2)直线与平面所成的角θ,0°≤θ≤90°
    (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
    三类角的求法:
    ①找出或作出有关的角。
    ②证明其符合定义,并指出所求作的角。
    ③计算大小(解直角三角形,或用余弦定理)。
    [练习]
    (1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
    (2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
    ①求BD1和底面ABCD所成的角;
    ②求异面直线BD1和AD所成的角;
    ③求二面角C1—BD1—B1的大小。
    (3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。
    (∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
    61.空间有几种距离?如何求距离?
    点与点,点与线,点与面,线与线,线与面,面与面间距离。
    将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
    如:正方形ABCD—A1B1C1D1中,棱长为a,则:
    (1)点C到面AB1C1的距离为___________;
    (2)点B到面ACB1的距离为____________;
    (3)直线A1D1到面AB1C1的距离为____________;
    (4)面AB1C与面A1DC1的距离为____________;
    (5)点B到直线A1C1的距离为_____________。
    62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
    正棱柱——底面为正多边形的直棱柱
    正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
    正棱锥的计算集中在四个直角三角形中:
    它们各包含哪些元素?
    63.球有哪些性质?
    (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
    (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。
    (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
    积为()
    答案:A
    64.熟记下列公式了吗?
    (2)直线方程:
    65.如何判断两直线平行、垂直?
    66.怎样判断直线l与圆C的位置关系?
    圆心到直线的距离与圆的半径比较。
    直线与圆相交时,注意利用圆的“垂径定理”。
    67.怎样判断直线与圆锥曲线的位置?
    68.分清圆锥曲线的定义
    70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)
    71.会用定义求圆锥曲线的焦半径吗?
    如:
    通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
    72.有关中点弦问题可考虑用“代点法”。
    答案:
    73.如何求解“对称”问题?
    (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。
    75.求轨迹方程的常用方法有哪些?注意讨论范围。
    (直接法、定义法、转移法、参数法)
    76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
    高三数学知识考点整理集锦
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/14 20:09:50