网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 高中数学21种解题方法与技巧
范文
    数学的题型千千万,每一种都要掌握好相应的解题方法。2020高考即将开战,你准备好了吗?小编为各位考生整理了高中数学21种解题方法与技巧,供大家参考阅读!
    高中数学21种解题方法与技巧
    1、解决绝对值问题
    主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
    ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
    ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
    ③两边平方法:适用于两边非负的方程或不等式。
    ④几何意义法:适用于有明显几何意义的情况。
    2、因式分解
    根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
    提取公因式
    选择用公式
    十字相乘法
    分组分解法
    拆项添项法
    3、配方法
    利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
    2020高考第一轮复习:高中数学21种 解题方法与技巧 
    4、换元法
    解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
    设元→换元→解元→还元
    5、待定系数法
    待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:
    ①设 ②列 ③解 ④写
    6、复杂代数等式
    复杂代数等式型条件的使用技巧:左边化零,右边变形。
    ①因式分解型:
    (-----)(----)=0 两种情况为或型
    ②配成平方型:
    (----)2+(----)2=0 两种情况为且型
    7、数学中两个最伟大的解题思路
    (1)求值的思路列欲求值字母的方程或方程组
    (2)求取值范围的思路列欲求范围字母的不等式或不等式组
    8、化简二次根式
    基本思路是:把√m化成完全平方式。即:
    9、观察法
    10、代数式求值
    方法有:
    (1)直接代入法
    (2)化简代入法
    (3)适当变形法(和积代入法)
    注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
    11、解含参方程
    方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:
    (1)按照类型求解
    (2)根据需要讨论
    (3)分类写出结论
    12、恒相等成立的有用条件
    (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
    (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
    13、恒不等成立的条件
    由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
    14、平移规律
    图像的平移规律是研究复杂函数的重要方法。平移规律是:
    15、图像法
    讨论函数性质的重要方法是图像法——看图像、得性质。
    定义域 图像在X轴上对应的部分
    值 域 图像在Y轴上对应的部分
    单调性
    从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。
    最 值 图像最高点处有最大值,图像最低点处有最小值
    奇偶性 关于Y轴对称是偶函数,关于原点对称是奇函数
    16、函数、方程、不等式简的重要关系
    方程的根
    函数图像与x轴交点横坐标
    不等式解集端点
    17、一元二次方程的解法
    一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:
    二次化为正
    判别且求根
    画出示意图
    解集横轴中
    18、一元二次方程根的讨论
    一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:
    题意
    二次函数图像
    不等式组
    不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。
    19、基本函数在区间上的值域
    我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:
    (1)定义域没有特别限制时---记忆法或结论法;
    (2)定义域有特别限制时---图像截断法,一般思路是:
    画出图像——截出一断——得出结论
    20、最值型应用题的解法
    应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:
    设变量——列函数——求最值——写结论
    21、穿线法
    穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:
    首项化正——求根标根——右上起穿——奇穿偶回
    注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。
    高中数学21种解题方法与技巧
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/19 1:15:37