标题 | 高考数学大题解答技巧盘点 |
范文 | 高考数学大题永远都是很难攻克的,大题要怎么做才能得分,下面就是小编给大家带来的数学大题解答技巧盘点,希望大家喜欢! 1、拓实基础,强化通性通法 高考对基础知识的考查既全面又突出重点。抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。 2、认真阅读考试说明,减少无用功 在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。 3、抓住重点内容,注重能力培养 高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。 4、关心教育动态,注意题型变化 由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习, 5、细心审题、耐心答题,规范准确,减少失误 计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。 函数的零点 (1)定义: 对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点. (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系: 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. (3)函数零点的判定(零点存在性定理): 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 典型例题1: 2 二二次函数y=ax2+bx+c(a>0)的图象与零点的关系 典型例题2: 3 三二分法 对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 1、函数的零点不是点: 函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标. 2、对函数零点存在的判断中,必须强调: (1)、f(x)在[a,b]上连续; (2)、f(a)·f(b)<0; (3)、在(a,b)内存在零点. 这是零点存在的一个充分条件,但不必要. 3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.典型例题3: 利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点. 4 四判断函数零点个数的常用方法 1、解方程法: 令f(x)=0,如果能求出解,则有几个解就有几个零点. 2、零点存在性定理法: 利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点. 3、数形结合法: 转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数. 典型例题4: 已知函数有零点(方程有根)求参数取值常用的方法 1、直接法: 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. 2、分离参数法: 先将参数分离,转化成求函数值域问题加以解决. 3、数形结合法: 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 高考数学大题解答技巧盘点 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。