标题 | 人教版高一高二数学知识点 |
范文 |
因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。小编高二频道为你整理了《人教版高二数学重点知识归纳》,助你金榜题名! ![]() 人教版高一高二数学知识点 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 人教版高一高二数学知识点 an=a1+(n-1)d(1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等. 和=(首项+末项)项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometricprogression).这个常数叫做等比数列的公比(commonratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列. 人教版高一高二数学知识点 解不等式问题的分类 解一元一次不等式. 解一元二次不等式. 可以化为一元一次或一元二次不等式的不等式. ①解一元高次不等式; ②解分式不等式; ③解无理不等式; ④解指数不等式; ⑤解对数不等式; ⑥解带绝对值的不等式; ⑦解不等式组. 解不等式时应特别注意下列几点: 正确应用不等式的基本性质. 正确应用幂函数、指数函数和对数函数的增、减性. 注意代数式中未知数的取值范围. 不等式的同解性 |f(x)|0) |f(x)|>g(x) ①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解; ②与g(x)<0同解. 当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x) |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。