标题 | 高二数学课本详细的知识点解析 |
范文 | 弄清基本定理是正确、快速解答习题的前提条件,特别是在数学章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。以下是小编给大家整理的高二数学课本详细的知识点解析,希望大家能够喜欢! 高二数学课本详细的知识点解析1 数列定义: 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d(1) 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 以上n均属于正整数。 解释说明: 从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式。 推论公式: 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。 基本公式: 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 高二数学课本详细的知识点解析2 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。 3.集合法 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若A?B,则p是q的充分条件。 若A?B,则p是q的必要条件。 若A=B,则p是q的充要条件。 若A?B,且B?A,则p是q的既不充分也不必要条件。 高二数学课本详细的知识点解析3 1.两角和与差的正弦、余弦和正切公式 重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。 难点:两角差的余弦公式的探索和证明。 2.简单的三角恒等变换 重点:掌握三角变换的内容、思路和方法,体会三角变换的特点. 难点:公式的灵活应用. 三角函数几点说明: 1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深. 2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算. 3.已知三角函数值求角问题,达到课本要求即可,不必拓展. 4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值. 5.积化和差、和差化积、半角公式只作为练习,不要求记忆. 6.两角和与差的正弦、余弦和正切公式 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。