标题 | 初中九年级数学知识点总结 |
范文 |
在中学阶段就养成好的学习习惯,拥有较高的学习效率,对人一生的发展都大有益处。下面是小编为大家整理的初中九年级数学知识点,欢迎阅读,希望对大家有所帮助。 ![]() 初中九年级数学知识点总结 实数 一、重要概念1.数的分类及概念数系表: 说明:“分类”的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x≥0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数:①定义及表示法 ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。 4.相反数:①定义及表示法 ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义(“三要素”) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值:①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算 1.运算法则(加、减、乘、除、乘方、开方) 2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。 三、应用举例(略) 附:典型例题 1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。 第二章代数式 ★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x,=│x│等。 4.系数与指数 区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。 7.算术平方根 ⑴正数a的正的平方根([a≥0—与“平方根”的区别]); ⑵算术平方根与绝对值 ①联系:都是非负数,=│a│ ②区别:│a│中,a为一切实数;中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 ⑴(—幂,乘方运算) ①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数) ⑵零指数:=1(a≠0) 负整指数:=1/(a≠0,p是正整数) 二、运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 ⑴基本性质:=(m≠0) ⑵符号法则: ⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①?=;②÷=;③=;④=;⑤ 技巧: 5.乘法法则:⑴单×单;⑵单×多;⑶多×多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b)= 7.除法法则:⑴单÷单;⑵多÷单。 8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用) 10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C.. 初中九年级数学知识点 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补 15.定理三角形两边的和大于第三边 16.推论三角形两边的差小于第三边 17.三角形内角和定理三角形三个内角的和等于180° 18.推论1直角三角形的两个锐角互余 19.推论2三角形的一个外角等于和它不相邻的两个内角的和 20.推论3三角形的一个外角大于任何一个和它不相邻的内角 21.全等三角形的对应边、对应角相等 22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25.边边边公理(SSS)有三边对应相等的两个三角形全等 26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27.定理1在角的平分线上的点到这个角的两边的距离相等 28.定理2到一个角的两边的距离相同的点,在这个角的平分线上 29.角的平分线是到角的两边距离相等的所有点的集合 30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33.推论3等边三角形的各角都相等,并且每一个角都等于60° 34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35.推论1三个角都相等的三角形是等边三角形 36.推论2有一个角等于60°的等腰三角形是等边三角形 37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38.直角三角形斜边上的中线等于斜边上的一半 39.定理线段垂直平分线上的点和这条线段两个端点的距离相等 40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42.定理1关于某条直线对称的两个图形是全等形 43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形 48.定理四边形的内角和等于360° 49.四边形的外角和等于360° 50.多边形内角和定理n边形的内角的和等于(n-2)×180° 51.推论任意多边的外角和等于360° 初中数学学习方法 一、主动预习 预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。 因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。 二、主动思考 很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法! 三、善于总结规律 解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题: (1)本题最重要的特点是什么? (2)解本题用了哪些基本知识与基本图形? (3)本题你是怎样观察、联想、变换来实现转化的? (4)解本题用了哪些数学思想、方法? (5)解本题最关键的一步在那里? (6)你做过与本题类似的题目吗?在解法、思路上有什么异同? (7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗? 把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。 四、拓宽解题思路 数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。 五、必须要有错题本 说到错题本不少同学都觉的自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了,因此,错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。 六、五个方面思考 “1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。五个方面分别为: ①这道题考查的知识点是什么。 ②为什么要这样做。 ③我是如何想到的。 ④还可以怎样做,有其它方法吗? ⑤一题多变看看它有几种变化的形式 千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,所以,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。 七、独立完成作业 现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。