标题 | 初二数学知识点全总结 |
范文 |
上学期间,大家最不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。还在为没有系统的知识点而发愁吗?下面小编为大家带来初二数学知识点全总结,希望大家喜欢! ![]() 初二数学知识点 Ⅰ、平行四边形 (1)平行四边形性质 1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形。 2)平行四边形的性质(包括边、角、对角线三方面) : 边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等; 角:③平行四边形的两组对角分别相等; 对角线:④平行四边形的对角线互相平分。 【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点。 (2)平行四边形判定 1)平行四边形的判定(包括边、角、对角线三方面): 边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形。 2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线。 3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。 4)平行线间的距离: 两条平行线中,一条直线上的任意一点到另一条直线的.距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。 Ⅱ、矩形 (1)矩形的性质 1)矩形的定义:有一个角是直角的平行四边形叫做矩形。 2)矩形的性质: ①矩形具有平行四边形的所有性质; ②矩形的四个角都是直角; ③矩形的对角线相等; ④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点。 (2)矩形的判定 1)矩形的判定: ①有一个角是直角的平行四边形是矩形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形。 2)证明一个四边形是矩形的步骤: 方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等; 方法二:若一个四边形中的直角较多,则可证三个角为直角。 3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半。 Ⅲ、菱形 (1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形。 2)菱形的性质: ①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点。 3)菱形的面积公式: 菱形的两条对角线的长分别为,则 (2)菱形的判定 1)菱形的判定: ①有一组邻边相等的平行四边形是菱形; ②对角线互相垂直的平行四边形是菱形; ③四条边都相等的四边形是菱形。 2)证明一个四边形是菱形的步骤: 方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”。 Ⅳ、正方形 (1)正方形的性质 1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 2)正方形的性质: 正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角。 3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心。 (2)正方形的判定 正方形的判定: ①有一组邻边相等且有一个角是直角的平行四边形是正方形; ②有一组邻边相等的矩形是正方形; ③对角线互相垂直的矩形是正方形; ④有一个角是直角的菱形是正方形; ⑤对角线相等的菱形是正方形; ⑥对角线互相垂直平分且相等的四边形是正方形。 初二数学知识点总结 相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数. (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正. (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号. 代数式求值 (1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种: ①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简. 3由三视图判断几何体 (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状. (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析: ①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高; ②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助; ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法 初二数学知识点梳理 1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。 2、内角:四个角都是90°; 3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角; 4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。 5、正方形具有平行四边形、菱形、矩形的一切性质。 6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。 7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。