网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 八年级数学上册知识点精选
范文
    初中的学生在学习八年级上册的数学内容时,要注重总结,经常总结学过的知识点有利于深入理解知识。下面小编为大家带来八年级数学上册知识点精选,希望大家喜欢!
    
    八年级数学上册知识点
    四边形
    平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
    平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
    平行四边形的判定
    1.两组对边分别相等的四边形是平行四边形
    2.对角线互相平分的四边形是平行四边形;
    3.两组对角分别相等的四边形是平行四边形;
    4.一组对边平行且相等的四边形是平行四边形。
    三角形的中位线平行于三角形的第三边,且等于第三边的一半。
    直角三角形斜边上的中线等于斜边的一半。
    矩形的定义:有一个角是直角的平行四边形。
    矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD
    矩形判定定理:
    1.有一个角是直角的平行四边形叫做矩形。
    2.对角线相等的平行四边形是矩形。
    3.有三个角是直角的四边形是矩形。
    菱形的定义:邻边相等的平行四边形。
    菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
    菱形的判定定理:
    1.一组邻边相等的平行四边形是菱形。
    2.对角线互相垂直的平行四边形是菱形。
    3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
    正方形定义:一个角是直角的菱形或邻边相等的矩形。
    正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
    正方形判定定理:
    1.邻边相等的矩形是正方形。
    2.有一个角是直角的菱形是正方形。
    梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
    直角梯形的定义:有一个角是直角的梯形
    等腰梯形的定义:两腰相等的梯形。
    等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
    等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
    解梯形问题常用的辅助线:如图
    线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
    八年级数学上册知识点总结
    1、确定位置
    在平面内,确定物体的位置一般需要两个数据。
    2、平面直角坐标系及有关概念
    ①平面直角坐标系
    在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
    ②坐标轴和象限
    为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
    注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
    ③点的坐标的概念
    对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
    平面内点的与有序实数对是一一对应的。
    ④不同位置的点的坐标的特征
    a、各象限内点的坐标的特征
    点P(x,y)在第一象限→ x>0,y>0
    点P(x,y)在第二象限 → x<0,y>0
    点P(x,y)在第三象限 → x<0,y<0
    点P(x,y)在第四象限 → x>0,y<0
    b、坐标轴上的点的特征
    点P(x,y)在x轴上 → y=0,x为任意实数
    点P(x,y)在y轴上 → x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点
    c、两条坐标轴夹角平分线上点的坐标的特征
    点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等
    点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数
    d、和坐标轴平行的直线上点的坐标的特征
    位于平行于x轴的直线上的各点的纵坐标相同。
    位于平行于y轴的直线上的各点的横坐标相同。
    e、关于x轴、y轴或原点对称的点的坐标的特征
    点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
    点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
    点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
    f、点到坐标轴及原点的距离
    点P(x,y)到坐标轴及原点的距离:
    点P(x,y)到x轴的距离等于 ∣y∣
    点P(x,y)到y轴的距离等于 ∣x∣
    点P(x,y)到原点的距离等于 √x2+y2
    3、坐标变化与图形变化的规律
    八年级数学上册知识点梳理
    一、轴对称图形
    1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
    2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
    3、轴对称图形和轴对称的区别与联系
    4.轴对称的性质
    ①关于某直线对称的两个图形是全等形。
    ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
    二、线段的垂直平分线
    1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
    2.线段垂直平分线上的点与这条线段的两个端点的距离相等
    3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
    三、用坐标表示轴对称小结:
    1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
    2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
    四、(等腰三角形)知识点回顾
    1.等腰三角形的性质
    ①.等腰三角形的两个底角相等。(等边对等角)
    ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
    2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
    五、(等边三角形)知识点回顾
    1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
    2、等边三角形的判定:
    ①三个角都相等的三角形是等边三角形。
    ②有一个角是600的等腰三角形是等边三角形。
    3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
    ①、等腰三角形的性质
    定理:等腰三角形的两个底角相等(简称:等边对等角)
    推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
    推论2:等边三角形的各个角都相等,并且每个角都等于60°。
    ②、等腰三角形的其他性质:
    (1)等腰直角三角形的两个底角相等且等于45°
    (2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
    (3)等腰三角形的三边关系:设腰长为a,底边长为b,则
    (4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
    ③、等腰三角形的判定
    等腰三角形的判定定理及推论:
    定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
    推论1:三个角都相等的三角形是等边三角形
    推论2:有一个角是60°的等腰三角形是等边三角形。
    推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    ④、三角形中的中位线
    连接三角形两边中点的线段叫做三角形的中位线。
    (1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
    (2)要会区别三角形中线与中位线。
    三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
    三角形中位线定理的作用:
    位置关系:可以证明两条直线平行。
    数量关系:可以证明线段的倍分关系。
    常用结论:任一个三角形都有三条中位线,由此有:
    结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
    结论2:三条中位线将原三角形分割成四个全等的三角形。
    结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
    结论4:三角形一条中线和与它相交的中位线互相平分。
    结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
    
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/18 17:27:50