标题 | 锐角三角函数的定义 |
范文 | 锐角的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。下面是小编为大家整理的关于锐角三角函数的定义,希望对您有所帮助。欢迎大家阅读参考学习! 锐角三角函数的定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦等于对边比斜边 余弦等于邻边比斜边 正切等于对边比邻边 余切等于邻边比对边 正割等于斜边比邻边 余割等于斜边比对边 正切与余切互为倒数 它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 它有六种基本函数(初等基本表示): 函数名正弦余弦正切余切正割余割 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有 正弦函数sinθ=y/r 余弦函数cosθ=x/r 正切函数tanθ=y/x 余切函数cotθ=x/y 正割函数secθ=r/x 余割函数cscθ=r/y (斜边为r,对边为y,邻边为x。) 以及两个不常用,已趋于被淘汰的函数: 正矢函数versinθ=1-cosθ 余矢函数coversθ=1-sinθ 同角三角函数间的关系: 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 互余角的三角函数间的关系: sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。