标题 | 人教版初一数学下册知识点复习总结备战中考 |
范文 | 学习对每个人的重要性大家都知道,我们都知道学习代表未来,成绩代表过去,学习成就人生,学习改变命运。那么你们知道关于人教版初一数学下册知识点复习总结备战中考内容还有哪些呢?下面是小编为大家准备2021人教版初一数学下册知识点复习总结备战中考,欢迎参阅。 ![]() 人教版初一数学下册知识点复习总结章一 篇一:直线、射线、线段 (1)直线、射线、线段的表示方法 ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB. ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边. ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。 (2)点与直线的位置关系: ①点经过直线,说明点在直线上; ②点不经过直线,说明点在直线外。 二:两点间的距离 (1)两点间的距离:连接两点间的线段的长度叫两点间的距离。 (2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。 三:正方体 (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象. (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面. 四:一元一次方程的解 定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。 把方程的解代入原方程,等式左右两边相等。 13、解一元一次方程: 1.解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。 2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。 使方程逐渐转化为ax=b的最简形式体现化归思想。 将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。 14、一元一次方程的应用 1.一元一次方程解应用题的类型 (1)探索规律型问题; (2)数字问题; (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%); (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量); (5)行程问题(路程=速度×时间); (6)等值变换问题; (7)和,差,倍,分问题; (8)分配问题; (9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度). 2.利用方程解决实际问题的基本思路: 首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。 列一元一次方程解应用题的五个步骤 (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系. (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数. (3)列:根据等量关系列出方程. (4)解:解方程,求得未知数的值. (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句. 人教版初一数学下册知识点复习总结章二 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。