标题 | 《高等数学》必背资料(2) |
内容 | 连续 1、知识范围 (1)函数连续的概念 函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类 (2)函数在一点处连续的性质 连续函数的四则运算、复合函数的连续性、反函数的连续性 (3)闭区间上连续函数的性质 有界性定理、最大值与最小值定理、介值定理(包括零点定理) (4)初等函数的连续性 2、要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。 (2)会求函数的间断点及确定其类型。 (3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。 一元函数微分学 (一)导数与微分 1、知识范围 (1)导数概念 导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系 (2)求导法则与导数的基本公式 导数的四则运算、反函数的导数、导数的基本公式 (3)求导方法 复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数 (4)高阶导数 高阶导数的定义、高阶导数的计算 (5)微分 微分的定义、微分与导数的关系、微分法则一阶微分形式不变性 2、要求 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。 (2)会求曲线上一点处的切线方程与法线方程。 (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。 (4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。 (5)理解高阶导数的概念,会求简单函数的阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。 (二)微分中值定理及导数的应用 1、知识范围 (1)微分中值定理 罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理 (2)洛必达(L‘Hospital)法则 (3)函数增减性的判定法 (4)函数的极值与极值点最大值与最小值 (5)曲线的凹凸性、拐点 (6)曲线的水平渐近线与铅直渐近线 |
随便看 |
|
在线学习网考试资料包含高考、自考、专升本考试、人事考试、公务员考试、大学生村官考试、特岗教师招聘考试、事业单位招聘考试、企业人才招聘、银行招聘、教师招聘、农村信用社招聘、各类资格证书考试等各类考试资料。