2020高二上册数学知识点


    因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。下面给大家带来一些关于高二上册数学知识点总结,希望对大家有所帮助。
    高二上册数学知识点总结1
    复合函数定义域
    若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
    求函数的定义域主要应考虑以下几点:
    ⑴当为整式或奇次根式时,R的值域;
    ⑵当为偶次根式时,被开方数不小于0(即≥0);
    ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
    ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
    ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
    ⑹分段函数的定义域是各段上自变量的取值集合的并集。
    ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
    ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
    ⑼对数函数的真数必须大于零,底数大于零且不等于1。
    ⑽三角函数中的切割函数要注意对角变量的限制。
    复合函数常见题型
    (ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
    (ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
    (ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
    高二上册数学知识点总结2
    1.求函数的单调性:
    利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
    利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
    反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
    (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
    (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
    (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
    2.求函数的极值:
    设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
    可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
    (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
    (4)检查f(x)的符号并由表格判断极值。
    3.求函数的值与最小值:
    如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。
    求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
    (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。
    4.解决不等式的有关问题:
    (1)不等式恒成立问题(绝对不等式问题)可考虑值域。
    f(x)(xA)的值域是[a,b]时,
    不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
    不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
    f(x)(xA)的值域是(a,b)时,
    不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
    (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
    5.导数在实际生活中的应用:
    实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。
    高二上册数学知识点总结3
    函数的单调性、奇偶性、周期性
    单调性:定义:注意定义是相对与某个具体的区间而言。
    判定方法有:定义法(作差比较和作商比较)
    导数法(适用于多项式函数)
    复合函数法和图像法。
    应用:比较大小,证明不等式,解不等式。
    奇偶性:
    定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
    f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
    判别方法:定义法,图像法,复合函数法
    应用:把函数值进行转化求解。
    周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
    其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
    应用:求函数值和某个区间上的函数解析式。
    四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
    常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
    平移变换y=f(x)→y=f(x+a),y=f(x)+b
    注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
    (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
    对称变换y=f(x)→y=f(-x),关于y轴对称
    y=f(x)→y=-f(x),关于x轴对称
    y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
    y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
    伸缩变换:y=f(x)→y=f(ωx),
    y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
    一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
    高二上册数学知识点总结4
    1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形.
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
    3、高中数学必修二知识点总结:直线与圆的位置关系:
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有;;
    (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    设圆,
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆.
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    5、空间点、直线、平面的位置关系
    公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
    应用:判断直线是否在平面内
    用符号语言表示公理1:
    公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
    符号:平面α和β相交,交线是a,记作α∩β=a.
    符号语言:
    公理2的作用:
    它是判定两个平面相交的方法.
    它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.
    它可以判断点在直线上,即证若干个点共线的重要依据.
    公理3:经过不在同一条直线上的三点,有且只有一个平面.
    推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
    公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据
    公理4:平行于同一条直线的两条直线互相平行
    高二上册数学知识点总结5
    一、变量间的相关关系
    1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
    2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.
    二、两个变量的线性相关
    1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.
    当r>0时,表明两个变量正相关;
    当r<0时,表明两个变量负相关.
    r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
    三、解题方法
    1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.
    2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.
    3.由相关系数r判断时|r|越趋近于1相关性越强.
    2020高二上册数学知识点