苏教版数学三年级知识点
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些三年级数学的知识点,希望对大家有所帮助。
小学三年级数学知识点
四边形知识点:
【正方形】
概念:四条边都相等、四个角都是直角的四边形是正方形。
特点:有4个直角,4条边相等。(正方形既是长方形,也是菱形)
周长:正方形的周长=边长×4
【长方形】
概念:有一个角是直角的平行四边形叫做长方形。
特点:长方形有两条长,两条宽,四个直角,对边相等。
周长:长方形的周长=(长+宽)×2
【平行四边形】
概念:两组对边互相平行的四边形,它的对边平行且相等,对角相等。(正方形、长方形数属于特殊的平行四边形)
特点:①对边相等、对角相等。②平行四边形容易变形。
周长:平行四边形的周长=两条边的边长相加×2
【梯形】
概念:有一组对边平行,另一组对边不平行的四边形。
特点:只有一组对边平行。
周长:上底+下底+两腰长度
【等腰梯形】
概念:两条腰相等的梯形,它的两个底角相等,是轴对称图形,有一条对称轴。
特点:有一组对边平行且两腰等长。
周长:上底+下底+两腰长度
【菱形】
概念:一组邻边相等的平行四边行是菱形。
特点:①四条边都相等②对角线互相垂直平分③一条对角线分别平分一组对角
周长:两条不同的边长相加×2
【每个四边形都有哪些联系】
1、正方形既是长方形,也是菱形。
2、正方形、长方形数属于特殊的平行四边形。
3、正方形还是特殊的长方形。
三年级数学知识点
1、角的组成:角是由一个顶点、两条边组成的。
2、角的大小与角的两条边的长短没有关系,跟角的开口大小有关系:角的开口越大,角就越大;开口越小,角就越小。
3、角的分类,按照角的大小可以分成:锐角、直角、钝角(平角、周角本学期不需要掌握,孩子知道即可,课上讲过)
4、锐角:比直角小的角叫锐角,也就是:锐角<90°(角的度数不要求掌握,了解即可)
直角:度数是90°的角叫直角,也就是:直角=90°。
钝角:比直角大比平角小的角叫钝角,也就是:90°<钝角<180°
5、做题时,如果让画出一个什么角,画完后一定要有一个表示角的小标志,即直角是一个直的小折线,钝角锐角都是小弧线
是否标出顶点和边要看题目具体要求。
6、做题时,如果具体到某个角上,一定要用∠1∠2∠3等表示,不能只填序号。
7、在方格纸上画角时,选定方格纸的一个横竖线交叉点为角的顶点,另一边就沿着横线或竖线画,这样画清楚干净,而且直角更好画,不易丢分。
三年级小学生如何快速高效掌握学数学的学习方法
一、学会主动预习
在老师讲新知识之前,学生要认真阅读要学的内容,课前自学例题,在看书时,要动脑思考,步步深入。学会运用自己有的知识去独立探究新的知识。
二、注意在老师的引导下掌握思考问题的方法
一些学生对公式、性质、法则等背的很熟,但遇到实际问题时又无从下手,不知如何应用所学知识去解题。例如:有这样一道题“把一个长方体的高去掉2厘米后成为一个正方体,它的表面积减少了48平方厘米,球这个正方体的体积时多少?”学生对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多学生理不出解题思路。这要求学生在老师的指导下逐渐掌握解题的思路。这道题从单位上讲,设计到长度单位、面积单位、体积单位。从图形上讲,设计到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形到正方形、长方体到正方体;从思维推理上讲:长方体减少一部分底面是正方形的长方体到减少部分四个面面积相等求一个面的面积求出长方形的长(即正方形的一个棱长)到正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。学生很快就可以解答出来:设原长方体的底面长为X,则2X×4=48得X=6。即为正方体得棱长。这样得出正方体得体积为6×6×6=216(立方厘米)。
三、及时总结解题规律
一些学生之所以那么优秀,就是因为他们把老师讲的知识都应用到了自己解题的过程中了。课堂上的45分钟,老师之所以把那些知识在课堂上讲,说明那些例题或者公式非常的重要。所以课堂上的45分钟就决定了你的成败,所以必须消化和理解老师在课堂上讲的内容。
老师一般讲得是方法。解答数学题也是有规律可循得。因此,在解题时,要注意总结解题规律,在解决每一道练习题后,要回顾以下问题:(1)本题最重要的特点时什么?(2)解本题用了哪些基本知识?(3)解本题最关键的一步在哪里?(4)以前有没有做过跟本题类似的题目?异同点在哪里?(5)本题除了这种方法之外,还有没有其他解法?把这一连串的问题贯穿于解题。
四、善于质疑问难
学启于思,思源于疑。也就是说学生的积极思维往往思由疑问开始的,学生的发现和提出问题思学会创新的关键。教育家顾明远说:“不会提问的学生,不是一个好学生。”因此,学生从小开始,就要学会质疑。比如学习“角的度量”,认识学习量角器时,认真观察它,问:“我发现了什么?刻度有什么用?”在学习时,经常这样提出问题,就可以开拓自己的思维空间,进而提高分析问题解决问题的能力。