初一数学下册知识点冀教版


    伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初一下册数学《三角形》知识点
    一、目标与要求
    1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
    2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
    3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
    4.三角形的内角和定理,能用平行线的性质推出这一定理。
    5.能应用三角形内角和定理解决一些简单的实际问题。
    二、重点
    三角形内角和定理;
    对三角形有关概念的了解,能用符号语言表示三条形。
    三、难点
    三角形内角和定理的推理的过程;
    在具体的图形中不重复,且不遗漏地识别所有三角形;
    用三角形三边不等关系判定三条线段可否组成三角形。
    四、知识框架
    五、知识点、概念总结
    1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    2.三角形的分类
    3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
    4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
    5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
    6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
    7.高线、中线、角平分线的意义和做法
    8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
    9.三角形内角和定理:三角形三个内角的和等于180°
    推论1直角三角形的两个锐角互余;
    推论2三角形的一个外角等于和它不相邻的两个内角和;
    推论3三角形的一个外角大于任何一个和它不相邻的内角;
    三角形的内角和是外角和的一半。
    10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
    11.三角形外角的性质
    (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
    (2)三角形的一个外角等于与它不相邻的两个内角和;
    (3)三角形的一个外角大于与它不相邻的任一内角;
    (4)三角形的外角和是360°。
    12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
    13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
    14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
    15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
    16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
    17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
    18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
    19.公式与性质
    多边形内角和公式:n边形的内角和等于(n-2)·180°
    20.多边形外角和定理:
    (1)n边形外角和等于n·180°-(n-2)·180°=360°
    (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
    21.多边形对角线的条数:
    (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
    (2)n边形共有n(n-3)/2条对角线。
    初一下册数学知识点总结沪教版
    一、整式
    单项式和多项式统称整式。
    a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
    b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
    c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
    a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数项的次数,叫做这个多项式的次数.
    b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中的那一项次数.
    a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
    b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
    二、同底数幂的乘法
    (m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
    a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
    b)指数是1时,不要误以为没有指数;
    c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
    d)当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为整数);
    e)公式还可以逆用:(m、n均为整数)
    a)幂的乘方法则:(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
    b)(m,n都为整数)
    c)底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3
    d)底数有时形式不同,但可以化成相同。
    e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
    f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。
    g)幂的乘方与积乘方法则均可逆向运用。
    五、同底数幂的除法
    a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).
    b)在应用时需要注意以下几点:
    1)法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。
    2)任何不等于0的数的0次幂等于1,即a0=1(a≠0),如100=1,(-2.50=1),则00无意义。
    c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如,d)运算要注意运算顺序。
    初一数学方法技巧
    1.请概括的说一下学习的方法
    曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
    2.请谈谈超前学习的好处
    曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”
    其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
    再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
    最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。
    3.请谈谈联想与总结
    曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。
    4.那么我们怎样预习呢?
    曰:“先说说学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。
    (2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
    再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
    (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
    (3)对于例题及习题的处理见上面的(2)及下面的第五条。