高三学年数学考试主要考的知识点


    要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。.全面复习,系统整理知识,查漏补缺,优化知识结构,以下是小编给大家整理的高三学年数学考试主要考的知识点,希望能助你一臂之力!
    高三学年数学考试主要考的知识点1
    一、线线、面面、线面垂直的定义
    ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
    ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
    ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
    二、垂直关系的判定和性质定理
    ①线面垂直判定定理和性质定理
    判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
    性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
    ②面面垂直的判定定理和性质定理
    判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
    性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
    高三学年数学考试主要考的知识点2
    一、极坐标系的建立
    在平面内取一个定点O,叫作极点,引一条射线OX,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
    对于平面内任意一点M,用ρ表示线段OM的长度,θ表示从OX到OM的角度,ρ叫点M的极径,θ叫点M的极角,有序数对(ρ,θ),就叫点M的极坐标。这样建立的坐标系叫极坐标系,记作M(ρ,θ).若点M在极点,则其极坐标为ρ=0,θ可以取任意值。
    二、极坐标和直角坐标的互化
    把直角坐标系的原点作为极点,X轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,其直角坐标(x,y),极坐标是(ρ,θ),从点M作MN⊥OX,由三角函数定义,得x=ρ cos θ,y=ρ sin θ.
    高三学年数学考试主要考的知识点3
    常用的诱导公式有以下几组:
    公式一:
    设α为任意角,终边相同的角的同一三角函数的值相等:
    sin(2kπ+α)=sinα (k∈Z)
    cos(2kπ+α)=cosα (k∈Z)
    tan(2kπ+α)=tanα (k∈Z)
    cot(2kπ+α)=cotα (k∈Z)
    公式二:
    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    公式三:
    任意角α与 -α的三角函数值之间的关系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    公式四:
    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    公式五:
    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα公式六:
    π/2±α及3π/2±α与α的三角函数值之间的关系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)