七年级部编版数学知识点


    对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
    初一下册数学知识点总结
    1.1正数与负数
    在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
    与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
    1.2有理数
    正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
    整数和分数统称有理数(rationalnumber)。
    通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
    数轴三要素:原点、正方向、单位长度。
    在直线上任取一个点表示数0,这个点叫做原点(origin)。
    只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
    数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
    一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
    1.3有理数的加减法
    有理数加法法则:
    1.同号两数相加,取相同的符号,并把绝对值相加。
    2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
    3.一个数同0相加,仍得这个数。
    有理数减法法则:减去一个数,等于加这个数的相反数。
    1.4有理数的乘除法
    有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
    乘积是1的两个数互为倒数。
    有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
    两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
    求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
    负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
    把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
    从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
    初中一年级数学上册知识点
    1.有理数:
    (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
    (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
    2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
    3.相反数:
    (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
    (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
    4.绝对值:
    (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
    (2)绝对值可表示为:
    绝对值的问题经常分类讨论;
    (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,
    5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
    初一数学学习方法
    一预习
    对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
    二听讲
    这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
    三复习
    体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
    四作业
    认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。
    五总结
    这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。
    如何挑选及处理习题
    一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。
    二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。
    要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的反思,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。
    三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。
    因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”