小学数学五年级上册知识点


    天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些五年级数学的知识点,希望对大家有所帮助。
    五年级数学下册知识点:图形的变换
    1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
    2、成轴对称图形的特征和性质:
    ①对称点到对称轴的距离相等;
    ②对称点的连线与对称轴垂直;
    ③对称轴两边的图形大小形状完全相同。
    3、物体旋转时应抓住三点:
    ①旋转中心;
    ②旋转方向;
    ③旋转角度
    旋转只改变物体的位置,不改变物体的形状、大小。
    小学五年级数学知识点:分数的意义和性质
    1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
    2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
    3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
    4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
    5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
    6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
    7、公因数:几个数共有的因数叫做它们的公因数,其中的一个叫做公因数。
    8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
    9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
    10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
    11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
    12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
    13、特殊情况下的公因数和最小公倍数:
    ①成倍数关系的两个数,公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,公因数就是1,最小公倍数就是它们的乘积。
    14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
    15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
    苏教版五年级下册数学教案
    方程的意义
    教学内容:
    教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
    教学目标要求:
    理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
    教学重点:
    理解并掌握方程的意义。
    教学难点:
    会列方程表示数量关系。
    教学过程:
    一、教学例1
    1.出示例1的天平图,让学生观察。
    提问:图中画的是什么?从图中能知道些什么?想到什么?
    2.引导:
    (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
    (2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
    二、教学例2
    1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
    2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
    3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
    三、完成练一练
    1、下面的式子哪些是等式?哪些是方程?
    2.将每个算式中用图形表示的未知数改写成字母。
    四、巩固练习
    1.完成练习一第1题
    先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
    2.完成练习一第2题
    五、小结
    今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
    六、作业
    完成补充习题
    板书设计:
    方程的意义
    X+50=100
    X+X=100
    像X+50=150、2X=200这样含有未知数的等式叫做方程