高二数学课后辅导的知识点解析


    进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。其实主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。以下是小编给大家整理的高二数学课后辅导的知识点解析,希望大家能够喜欢!
    高二数学课后辅导的知识点解析1
    零向量与任何向量共线。非零向量共线条件是b=λa,其中a≠0,λ是实数。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,任意一组平行向量都可移到同一直线上,所以称为共线向量。
    平面向量共线的条件
    零向量与任何向量共线
    以下考虑非零向量,三个方法
    (1)方向相同或相反
    (2)向量a=k向量b
    (3)a=(x1,y1),b=(x2,y2)
    a//b等价于x1y2-x2y1=0
    共线向量基本定理
    如果a≠0,那么向量b与a共线的充要条件是:存在实数λ,使得b=λa。
    证明:
    (1)充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。
    (2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。
    (3)性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。
    高二数学课后辅导的知识点解析2
    1、导数的定义:在点处的导数记作.
    2.导数的几何物理意义:曲线在点处切线的斜率
    ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
    3.常见函数的导数公式:①;②;③;
    ⑤;⑥;⑦;⑧。
    4.导数的四则运算法则:
    5.导数的应用:
    (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
    注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
    (2)求极值的步骤:
    ①求导数;
    ②求方程的根;
    ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
    (3)求可导函数值与最小值的步骤:
    ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
    高二数学课后辅导的知识点解析3
    (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
    (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
    (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
    (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
    (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
    (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。