初二数学单元的知识点


    知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
    初二上学期数学知识点归纳
    分式方程
    一、理解定义
    1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
    2、解分式方程的思路是:
    (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
    (2)解这个整式方程。
    (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
    (4)写出原方程的根。
    “一化二解三检验四总结”
    3、增根:分式方程的增根必须满足两个条件:
    (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
    4、分式方程的解法:
    (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
    (3)解整式方程;(4)验根;
    注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
    分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
    5、分式方程解实际问题
    步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
    二、轴对称图形:
    一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
    1、轴对称:
    两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
    2、轴对称图形与轴对称的区别与联系:
    (1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
    (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
    3、轴对称的性质:
    (1)成轴对称的两个图形全等。
    (2)对称轴与连结“对应点的线段”垂直。
    (3)对应点到对称轴的距离相等。
    (4)对应点的连线互相平行。
    三、用坐标表示轴对称
    1、点(x,y)关于x轴对称的点的坐标为(x,-y);
    2、点(x,y)关于y轴对称的点的坐标为(-x,y);
    3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
    四、关于坐标轴夹角平分线对称
    点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
    点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
    八年级上册数学知识点
    1、全等三角形的对应边、对应角相等
    2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
    3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
    4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
    5、边边边公理(SSS)有三边对应相等的两个三角形全等
    6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
    7、定理1在角的平分线上的点到这个角的两边的距离相等
    8、定理2到一个角的两边的距离相同的点,在这个角的平分线上
    9、角的平分线是到角的两边距离相等的所有点的集合
    10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
    11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
    12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
    13、推论3等边三角形的各角都相等,并且每一个角都等于60°
    14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
    15、推论1三个角都相等的三角形是等边三角形
    16、推论2有一个角等于60°的等腰三角形是等边三角形
    17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
    18、直角三角形斜边上的中线等于斜边上的一半
    19、定理线段垂直平分线上的点和这条线段两个端点的距离相等
    20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
    21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
    22、定理1关于某条直线对称的两个图形是全等形
    23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
    24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
    25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
    26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
    27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
    28、定理四边形的内角和等于360°
    29、四边形的外角和等于360°
    30、多边形内角和定理n边形的内角的和等于(n-2)×180°
    31、推论任意多边的外角和等于360°
    32、平行四边形性质定理1平行四边形的对角相等
    初二数学知识点
    1、正方形的概念
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    2、正方形的性质
    (1)具有平行四边形、矩形、菱形的一切性质;
    (2)正方形的四个角都是直角,四条边都相等;
    (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
    (4)正方形是轴对称图形,有4条对称轴;
    (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
    (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
    3、正方形的判定
    (1)判定一个四边形是正方形的主要依据是定义,途径有两种:
    先证它是矩形,再证有一组邻边相等。
    先证它是菱形,再证有一个角是直角。
    (2)判定一个四边形为正方形的一般顺序如下:
    先证明它是平行四边形;
    再证明它是菱形(或矩形);
    最后证明它是矩形(或菱形)。