初二数学下册湘教版知识点


    课堂临时报佛脚,不如课前预习好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
    初二上学期数学知识点归纳
    分式方程
    一、理解定义
    1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
    2、解分式方程的思路是:
    (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
    (2)解这个整式方程。
    (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
    (4)写出原方程的根。
    “一化二解三检验四总结”
    3、增根:分式方程的增根必须满足两个条件:
    (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
    4、分式方程的解法:
    (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
    (3)解整式方程;(4)验根;
    注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
    分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
    5、分式方程解实际问题
    步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
    二、轴对称图形:
    一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
    1、轴对称:
    两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
    2、轴对称图形与轴对称的区别与联系:
    (1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
    (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
    3、轴对称的性质:
    (1)成轴对称的两个图形全等。
    (2)对称轴与连结“对应点的线段”垂直。
    (3)对应点到对称轴的距离相等。
    (4)对应点的连线互相平行。
    三、用坐标表示轴对称
    1、点(x,y)关于x轴对称的点的坐标为(x,-y);
    2、点(x,y)关于y轴对称的点的坐标为(-x,y);
    3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
    四、关于坐标轴夹角平分线对称
    点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
    点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
    八年级上册数学知识点
    1、全等三角形的对应边、对应角相等
    2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
    3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
    4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
    5、边边边公理(SSS)有三边对应相等的两个三角形全等
    6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
    7、定理1在角的平分线上的点到这个角的两边的距离相等
    8、定理2到一个角的两边的距离相同的点,在这个角的平分线上
    9、角的平分线是到角的两边距离相等的所有点的集合
    10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
    11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
    12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
    13、推论3等边三角形的各角都相等,并且每一个角都等于60°
    14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
    15、推论1三个角都相等的三角形是等边三角形
    16、推论2有一个角等于60°的等腰三角形是等边三角形
    17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
    18、直角三角形斜边上的中线等于斜边上的一半
    19、定理线段垂直平分线上的点和这条线段两个端点的距离相等
    20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
    21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
    22、定理1关于某条直线对称的两个图形是全等形
    23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
    24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
    25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
    26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
    27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
    数学学习方法技巧
    1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
    2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。
    3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。
    4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。