小学五年级数学单元知识点
知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是小编给大家整理的一些五年级数学的知识点,希望对大家有所帮助。
五年级上册数学练习题知识点
一、填空题
1.用字母表示三角形和梯形的面积计算公式是( )和( )。
2. 2.3㎡=( )d㎡ 3200c㎡=( )d㎡
0.25㎡=( )c㎡ 6500平方米=( )公顷
3.一个平行四边形的底和高都是1.4m,它的面积是( )㎡,和它等底等高的三角形的面积是( )㎡。
4.一个直角三角形的两条直角边分别是0.3cm和0.4cm,斜边长0.5cm,这个直角三角形的面积是( )c㎡。
5.一个三角形的面积是240㎡,高是40m,底是( )m。
6.两个完全一样的梯形可以拼成一个( )。
7.一个正方形的周长是32dm,那么它的边长是( )dm,面积是( )d㎡。
8.一个平行四边形的面积是36㎡,如果把它的底和高都缩小到原来的3倍,得到的平行四边形的面积是( )㎡。
9.一个梯形的上底扩大2倍,下底也扩大2倍,高不变,那么它的面积扩大( )倍。
10.设计一个面积为24平方米的三角形,底为( ),高为( )。
二、判断题
1.三角形的面积等于平行四边形的一半。( )
2.两个花园的周长相等,它们的面积也一定相等。( )
3.一个三角形的底扩大2倍,高不变,它的面积也扩大2倍。( )
4.同底等高的两个三角形,形状不一定相同,但它们的面积一定相等。( )
5.两个面积相等的梯形纸片一定能拼成一个平行四边形。( )
三、选择题
1.一个平四边形的面积是4.2c㎡,高是2cm,底是( )cm。
A.2.1 B.1.05 C.2 D.4.2
2.学校篮球场占地面积约是0.6( )
A.公顷 B.平方米 C.米 D.平方千米
3.能拼成一个长方形的是两个完全一样的( )三角形。
A.锐角 B.等腰 C.钝角 D.直角
4.已知梯形的面积是45d㎡,上底是4dm,下底是6dm,它的高是( )dm。
A.9 B.4.5 C.2.25 D.45
5.等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长( )。
A.24厘米 B.12厘米 C.18厘米 D.36厘米
四、计算题
1、平行四边形的一条边长9分米,这条边上的高是8分米,另一条边上的高是6分米,求这个平行四边形的面积和周长?
2.两个完全一样的三角形拼成一个平行四边形.平行四边形的底是8厘米,高是6厘米,其中一个三角形的面积是多少平方厘米?
3.梯形的上底是3.8厘米,高是4厘米,已知它的面积是20平方厘米,下底是多少厘米?
五年级上册数学小数除法知识点
一、除数是整数
小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
除得的商的哪一数位上不够商,就在那一位上写0占位。
二、除数是小数
一看:看清被除数有几位小数。
二移:把除数和被除数的小数点同时向右移动相同的位数(也就是同时扩大相同的倍数),使除数变成整数,(被除数是不是整数不重要,只要扩大相同倍数就行)。
三算:按照除数是整数的小数除法计算进行计算。
a÷b=c(b≠0),b=1时,a=c;b>1时,a>c;b<1时,a
三、商的近似数
求商的近似值:计算时要比保留的小数多一位。
取商的近似值的方法:“四舍五入”法、
保留商的近似值,小数末尾的0不能去掉。
求积的近似值:计算出整个积的值后再去近似值。
四、循环小数
1、循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
2、循环节的定义:一个循环小数的小数部分,依次不断重复出现的一个数字或者几个数字,叫做这个循环小数的循环节。如5.33……循环节是3。7.14545……的循环节是45。
3、循环小数必须满足的条件:①必须是无限小数;②一个数字或者几个数字依次不断重复出现。
4、循环小数的记法:
①省略后面的“……”号;
②在第一个循环节首尾的数字上分别加点。
5、小数分类:可以分为无限小数和有限小数。小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。
循环小数一定是无限小数,无限小数不一定是循环小数。
五、解决问题
应用题中取商的近似值的方法有:“四舍五入”法、“进一法”和“去尾法”。在解决问题的时候,要根据题目实际情况选择“进一法”和“去尾法”取商的近似值。
小学五年级数学解题技巧
1、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50…………运用加法计算法则
=(60-1)×50…………运用数的组成规则
=60×50-1×50…………运用乘法分配律
=3000-50…………运用乘法计算法则
=2950…………运用减法计算法则
3、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例4:填空:0.75的位是(),这个数小数部分的位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。
这道题的意图就是要对“一个数的位和小数部分的位的区别”,还有“数位和数值”的区别等。
例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。
4、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
例6:自然数按约数的个数来分,可分成几类?
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。
5、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。