初三数学课文知识点
天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级数学知识点
一、平行四边形
1、平行四边形的性质定理:
平行四边形的对边相等。
平行四边形的对角相等(邻角互补)。
平行四边形的对角线互相平分。
2、平行四边形的判定方法:
定义:两组对边分别平行的四边形是平行四边形。
判定定理:两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
二、矩形
1、矩形的性质定理:
矩形的四个角都是直角。
矩形的对角线相等。
2、矩形的判定方法:
定义:有一个角是直角的平行四边形是矩形。
判定定理:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
(对角线相等且互相平分的四边形是矩形。)
三、菱形
1、菱形的性质定理:
菱形的四条边都相等。
菱形的对角线相等,并且每条对角线平分一组对角。
2、菱形的判定方法:
定义:有一组邻边相等的平行四边形是菱形。
判定定理:四条边都相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
(对角线互相垂直且平分的四边形是菱形。)
四、正方形
1、正方形的性质定理:
正方形的四个角都是直角,四条边都相等。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的判定定理:
l有一个角是直角的菱形是正方形。
l有一组邻边相等的矩形是正方形。
l有一个角是直角且有一组邻边相等的平行四边形是正方形。
l对角线相等的菱形是正方形。
l对角线互相垂直的矩形是正方形。
l对角线相等且互相垂直的平行四边形是正方形。
l对角线相等且互相垂直、平分的四边形是正方形。
五、等腰梯形
1、等腰梯形的性质定理:
等腰梯形的两条对角线相等。
等腰梯形在同一底上的两个角相等。
2、等腰梯形的判定方法:
定义:两腰相等的梯形是等腰梯形。
判定定理:在同一底上的两个角相等的梯形是等腰梯形。
九年级下册数学知识点总结
直线与圆的位置关系
①直线和圆无公共点,称相离。AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
【篇二:旋转变换】
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
初三数学复习知识点
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。