八年级数学的知识点总结


    只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习方法,数学作为最烧脑的科目之一,需要不断的练习。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
    初二上学期数学知识点归纳
    一、勾股定理
    1、勾股定理
    直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
    2、勾股定理的逆定理
    如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
    3、勾股数
    满足的三个正整数,称为勾股数。
    常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
    二、证明
    1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。
    2、三角形内角和定理:三角形三个内角的和等于180度。
    (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。
    (2)三角形的外角与它相邻的内角是互为补角。
    3、三角形的外角与它不相邻的内角关系
    (1)三角形的一个外角等于和它不相邻的两个内角的和。
    (2)三角形的一个外角大于任何一个和它不相邻的内角。
    4、证明一个命题是真命题的基本步骤
    (1)根据题意,画出图形。
    (2)根据条件、结论,结合图形,写出已知、求证。
    (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
    三、数据的分析
    1、平均数
    ①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。
    ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
    2、中位数与众数
    ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
    ②一组数据中出现次数最多的那个数据叫做这组数据的众数。
    ③平均数、中位数和众数都是描述数据集中趋势的统计量。
    ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
    ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
    ⑥各个数据重复次数大致相等时,众数往往没有特别意义。
    3、从统计图分析数据的集中趋势
    4、数据的离散程度
    ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
    ②数学上,数据的离散程度还可以用方差或标准差刻画。
    ③方差是各个数据与平均数差的平方的平均数。
    ④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
    ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
    八年级上册数学知识点沪科版
    (一)运用公式法
    我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
    a2-b2=(a+b)(a-b)
    a2+2ab+b2=(a+b)2
    a2-2ab+b2=(a-b)2
    如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
    (二)平方差公式
    平方差公式
    (1)式子:a2-b2=(a+b)(a-b)
    (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
    (三)因式分解
    1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
    2.因式分解,必须进行到每一个多项式因式不能再分解为止。
    (四)完全平方公式
    (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
    a2+2ab+b2=(a+b)2
    a2-2ab+b2=(a-b)2
    这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
    把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
    上面两个公式叫完全平方公式。
    (2)完全平方式的形式和特点
    ①项数:三项
    ②有两项是两个数的的平方和,这两项的符号相同。
    ③有一项是这两个数的积的两倍。
    (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
    (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
    (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
    (五)分组分解法
    我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
    如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.
    原式=(am+an)+(bm+bn)
    =a(m+n)+b(m+n)
    做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
    原式=(am+an)+(bm+bn)
    =a(m+n)+b(m+n)
    =(m+n)×(a+b).
    初二数学学习方法技巧
    一、克服心理疲劳
    第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。
    二、战胜高原现象
    复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。
    三、重视复习“错误”
    如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。
    四、把握心理特点搞好考前复习
    实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。
    1、课本不容忽视
    对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。
    2、错题本
    相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。