高效复习高二数学知识点归纳


    总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,让我们抽出时间写写总结吧。下面是小编给大家带来的高效复习高二数学知识点归纳,以供大家参考!
    高效复习高二数学知识点归纳
    等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
    面积公式
    若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
    S=ab/2。
    且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
    S=ch/2=c2/4。
    等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
    高二必修三数学知识点整理
    (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
    (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
    (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
    (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
    (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
    (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。
    高二数学下册必修二重要知识点
    一、导数的应用
    1.用导数研究函数的最值
    确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
    2.生活中常见的函数优化问题
    1)费用、成本最省问题
    2)利润、收益问题
    3)面积、体积最(大)问题
    二、推理与证明
    1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
    2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
    三、不等式
    对于含有参数的一元二次不等式解的讨论
    1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
    2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。