四年级数学上册知识点复习


    学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些四年级数学的知识点,希望对大家有所帮助。
    
    四年级数学知识点
    角
    (1)角的定义从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
    (2)角的度量角的计量单位是"度",用符号"°"表示。把半圆分成180等份,每一份所对的角的大小是1度。记作"1°"。
    (3)角的大小比较角的大小与角的两边画出的长短没有关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
    (4)角的画法一画线,二量角,三连线,四标注。一副三角板可以画出的角的度数是15的倍数。
    (5)角的分类
    ①锐角:小于90°的角叫做锐角。
    ②直角:等于90°的角叫做直角。
    ③钝角:大于90°而小于180°的角叫做钝角。
    ④平角:角的两边成一条直线,所组成的角叫做平角。平角180°。
    ⑤周角:角的一边旋转一周,与另一边重合。周角是360°。
    四年级数学知识点整理
    鸡兔问题公式
    (1)已知总头数和总脚数,求鸡、兔各多少:
    (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
    总头数-兔数=鸡数。
    或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
    总头数-鸡数=兔数。
    例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
    解一(100-2×36)÷(4-2)=14(只)………兔;
    36-14=22(只)……………………………鸡。
    解二(4×36-100)÷(4-2)=22(只)………鸡;
    36-22=14(只)…………………………兔。
    (答略)
    (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
    (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
    总头数-兔数=鸡数
    或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
    总头数-鸡数=兔数。(例略)
    (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
    (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
    总头数-兔数=鸡数。
    或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
    总头数-鸡数=兔数。(例略)
    (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
    (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
    例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
    解一(4×1000-3525)÷(4+15)
    =475÷19=25(个)
    解二1000-(15×1000+3525)÷(4+15)
    =1000-18525÷19
    =1000-975=25(个)(答略)
    (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费_元,破损者不仅不给运费,还需要赔成本_元……。它的解法显然可套用上述公式。)
    (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
    〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
    〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
    例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
    解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
    =20÷2=10(只)……………………………鸡
    〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
    =12÷2=6(只)…………………………兔(答略)
    鸡兔同笼
    1、鸡兔同笼属于假设问题,假设的和最后结果相反。
    2、“鸡兔同笼”问题的解题方法
    假设法:
    ①假如都是兔
    ②假如都是鸡
    ③古人“抬脚法”:
    解答思路:
    假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
    3、公式:
    鸡兔总脚数÷2-鸡兔总数=兔的只数;
    鸡兔总数-兔的只数=鸡的只数。
    小学四年级上册数学知识点
    1.大数的认识
    亿以内的数的认识:
    十万:10个一万;
    一百万:10个十万;
    一千万:10个一百万;
    一亿:10个一千万;
    2.数级
    数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
    3.数级分类
    (1)四位分级法
    即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。
    如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……
    这些级分别叫做个级,万级,亿级……
    (2)三位分级法
    即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
    4.数位
    数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。
    5.数的产生
    阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
    阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。