七年级数学上册知识点北师大版


    数学是我们我们从小学到大的一门学科,如果能认认真真学下来,数学并不难,只是数学要下苦功去学,学会了很有意思。这次小编给大家整理了七年级数学上册知识点北师大版,供大家阅读参考。
    
    七年级数学上册知识点北师大版
    第一章 丰富的图形世界
    1、几何图形
    从实物中抽象出来的各种图形,包括立体图形和平面图形。
    2、点、线、面、体
    (1)几何图形的组成
    点:线和线相交的地方是点,它是几何图形中最基本的图形。
    线:面和面相交的地方是线,分为直线和曲线。
    面:包围着体的是面,分为平面和曲面。
    体:几何体也简称体。
    (2)点动成线,线动成面,面动成体。
    3、生活中的立体图形
    柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
    第二章 有理数及其运算
    1.有理数
    可表示为两个整数之比形式的数。
    正有理数 整数
    有理数 零 有理数
    负有理数 分数
    2、相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0.
    3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
    4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
    5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,|a|≥0。若|a|=a,则a≥0;若|a|=-a,则a≤0。
    正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。
    6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
    7、有理数的运算
    (1)五种运算:加、减、乘、除、乘方
    多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为0,积就为0。
    有理数加法法则:
    同号两数相加,取相同的符号,并把绝对值相加。
    异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
    一个数同0相加,仍得这个数。
    互为相反数的两个数相加和为0。
    有理数减法法则:
    减去一个数,等于加上这个数的相反数!
    有理数乘法法则:
    两数相乘,同号得正,异号得负,并把绝对值相乘。
    任何数与0相乘,积仍为0。
    有理数除法法则:
    两个有理数相除,同号得正,异号得负,并把绝对值相除。
    0除以任何非0的数都得0。
    注意:0不能作除数。
    有理数的乘方:求n个相同因数a的积的运算叫做乘方。
    正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
    (2)有理数的运算顺序
    先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
    (3)运算律
    加法交换律、 加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。
    8、科学记数法
    一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)
    第三章 整式及其加减
    1、代数式
    用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
    注意:
    ①代数式中除了含有数、字母和运算符号外,还可以有括号;
    ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
    ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
    ※代数式的书写格式:
    ①代数式中出现乘号,通常省略不写,如vt;
    ②数字与字母相乘时,数字应写在字母前面,如4a;
    ③带分数与字母相乘时,应先把带分数化成假分数;
    ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
    ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作4/(a-4);注意:分数线具有“÷”号和括号的双重作用。
    ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。
    2、整式
    单项式和多项式统称为整式。
    ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
    注意:
    1.单独的一个数或一个字母也是单项式;
    2.单独一个非零数的次数是0;
    3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。
    ②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
    3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
    注意:
    ①同类项有两个条件:所含字母相同;相同字母的指数也相同。
    ②同类项与系数无关,与字母的排列顺序无关;
    ③几个常数项也是同类项。
    4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
    5、去括号法则
    ①根据去括号法则去括号:
    括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
    ②根据分配律去括号:
    括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
    6、添括号法则
    添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
    7、整式的运算:
    整式的加减法:(1)去括号;(2)合并同类项。
    基本平面图形
    1、线段、射线、直线
    2、直线的性质
    (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线)
    (2)过一点的直线有无数条。
    (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
    3、线段的性质
    (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短)
    (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
    (3)线段的大小关系和它们的长度的大小关系是一致的。
    4、线段的中点:
    点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
    5、角
    有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
    6、角的表示
    角的表示方法有以下四种:
    ①用数字表示单独的角,如∠1,∠2,∠3等。
    ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
    ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
    ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
    注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
    7、角的度量
    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
    把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
    把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
    1°=60’,1’=60”。
    8、角的平分线
    从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
    9、角的性质
    (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
    (2)角的大小可以度量,可以比较,角可以参与运算。
    10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
    11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
    从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
    12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
    圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
    学好数学的方法
    1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!
    2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率!
    3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!
    4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!
    5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!
    总之,学习数学,不要怕难,不要怕累,不要怕问!
    学好数学的几条建议
    1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。
    2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。
    3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!
    4、要注重学习的技巧和方法。不要死记硬背一些公式、定律,而是要靠分析、理解,做到灵活运用,举一反三。特别要重视课堂上学习新知识和分析练习的时候,不能思想开小差,管自己做与学习无关的事情。注意力一定要高度集中,并积极思考,遇到不懂题目时要及时做好记录,课后和同学进行探讨,做好查漏补缺。
    5、要有善于观察、阅读的好习惯。只要我们做数学的有心人,细心观察、思考,我们就会发现生活中到处都有数学。除此之外,同学们还可以从多方面、多种渠道来学习数学。如:从电视、网络、《小学生数学报》、《数学小灵通》等报刊杂志上学习数学,不断扩展知识面。
    6、要有自己的观点。现在,大部分同学遇到一些较难或不清楚的问题时,就不加思考,轻易放弃了,有的干脆听从老师、父母、书本的意见。即使是老师、长辈、书籍等权威,也不是没有一点儿失误的,我们要重视权威的意见,但绝不等于不加思考的认同。
    7、要学会概括和积累。及时总结解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。
    8、要重视其他学科的学习。因为各个学科之间是有着密切的联系,它对学习数学有促进的作用。如:学好语文对数学题目的理解有很大的帮助等等。