高二数学重点知识点归纳


    总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,一起来学习写总结吧。你想知道总结怎么写吗?下面是小编给大家带来的高二数学重点知识点归纳,以供大家参考!
    高二数学重点知识点归纳
    第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。
    第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
    第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。
    高中数学知识点总结
    1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
    2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
    3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。
    4.列一元一次方程解应用题:
    (1)读题分析法:多用于“和,差,倍,分问题”
    仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
    (2)画图分析法:多用于“行程问题”
    利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
    11.列方程解应用题的常用公式:
    (1)行程问题:距离=速度·时间;
    (2)工程问题:工作量=工效·工时;
    (3)比率问题:部分=全体·比率;
    (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;
    (5)商品价格问题:售价=定价·折·,利润=售价—成本,;
    (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
    S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h。
    本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
    高二数学知识点摘要
    1.函数的奇偶性。
    (1)若f(x)是偶函数,那么f(x)=f(-x)。
    (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
    (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
    (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
    (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
    2.复合函数的有关问题。
    (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的`定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
    (2)复合函数的单调性由“同增异减”判定。
    3.函数图像(或方程曲线的对称性)。
    (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
    (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
    (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
    (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。
    (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。
    4.函数的周期性。
    (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。
    (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数。
    (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数。
    (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。
    5.判断对应是否为映射时,抓住两点。
    (1)A中元素必须都有象且。
    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
    6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。