关于初二下册数学知识点
学业的精深造诣来源于勤奋好学,只有好学者,才能在无边的知识海洋里猎取到真智才学,下面是小编为大家精心整理的初二下册数学知识点,希望对大家有所帮助。
分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
一元一次不等式和一元一次不等式组
一、不等关系
1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.
2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.
3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.
非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0
非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0
二、不等式的基本性质
1、掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,并且c<0,那么ac
2、比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三、不等式的解集:
1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.
3、不等式的解集在数轴上的表示:
用数轴表示不等式的解集时,要确定边界和方向:
①边界:有等号的是实心圆圈,无等号的是空心圆圈;
②方向:大向右,小向左
四、一元一次不等式:
1、只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.
2、解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.
3、解一元一次不等式的步骤:
①去分母;
②去括号;
③移项;
④合并同类项;
⑤系数化为1(不等号的改变问题)
4、一元一次不等式基本情形为ax>b(或ax
①当a>0时,解为;
②当a=0时,且b<0,则x取一切实数;
当a=0时,且b≥0,则无解;
③当a<0时,解为;
5、不等式应用的探索(利用不等式解决实际问题)
列不等式解应用题基本步骤与列方程解应用题相类似,即:
①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如"大于"、"小于"、"不大于"、"不小于"等含义;
②设:设出适当的未知数;
③列:根据题中的不等关系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:写出答案,并检验答案是否符合题意.